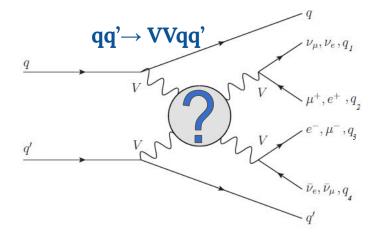

# **Review of CMS projections**


Flavia Cetorelli Università degli Studi di Milano - Bicocca, Italia



#### **Vector Boson Scattering**

- Production of a pair of EWK bosons (VV) from a parton scattering process mediated by EWK bosons (V=W,Z,γ).
- **★** Purely **electroweak process**, VBS matrix element @LO  $O(\alpha_{EWK}^6 \alpha_S^0)$ .
- **CD** induced diagrams  $O(\alpha_{EWK}^4 \alpha_S^2)$  are treated as **background**.

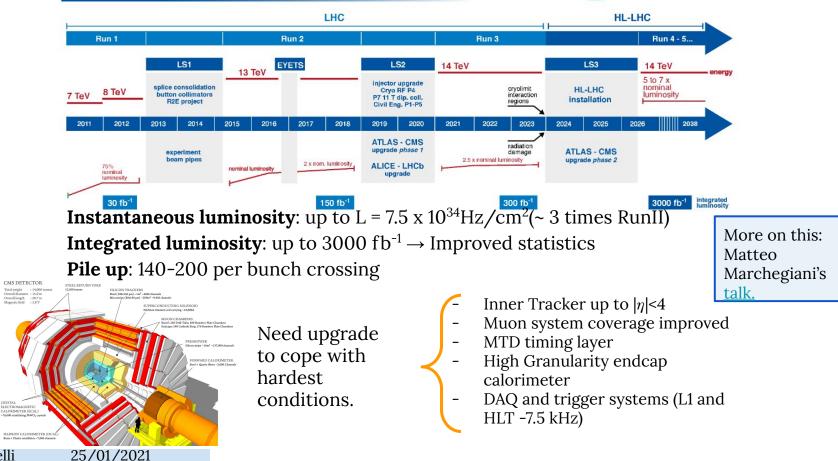




EWK sector precise measurements.
Sensitive to EFT operators, anomalies.
Polarization studies ←→ EWSB.

#### Fully leptonic analysis @ 13 TeV Run II

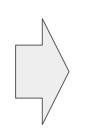
|                       |                                                           | Signal                                                       | Irreducible bkg                                                                             | Other bkgs                                                  | Event topology                                             |
|-----------------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
| ed                    | W <sup>±</sup> W <sup>±</sup> jj<br>Best EW∕ QCD<br>ratio |                                                              | q<br>q<br>q<br>q<br>q<br>q<br>q<br>q<br>q<br>q<br>q<br>q<br>q<br>q<br>q<br>q<br>q<br>q<br>q | WZjj(ew/qcd)<br>ZZ<br>Non-prompt<br>tVx<br>Wy<br>Wrong-sign | 2 same charge leptons<br>2 tag jets and MET                |
| Statistically limited | WZjj                                                      | $q$ $q$ $\ell^{\mp}$ $\ell^{\pm}$ $\nu$ $\mu^{\mu}$ $q$ $q'$ | 80000000000000000000000000000000000000                                                      | ZZ<br>Non-prompt<br>tVx<br>Wγ<br>Wrong-sign                 | 3 leptons with total charge<br>-1/+1<br>2 tag jets and MET |
| Sta                   | ZZjj<br>Cleanest channel<br>less statistics               |                                                              | q<br>q<br>q<br>q<br>q<br>q<br>z<br>k<br>e<br>e<br>e<br>e<br>e<br>+ttZ, VVZ                  | Z+jets, tt+jets<br>(negligible<br>impact)                   | 2 pair of opposite charge<br>leptons<br>2 tags jets        |


### HL LHC

CRYSTAL

F. Cetorelli

#### LHC / HL-LHC Plan






#### **VBS scattering in HL LHC**

**VBS status @13 TeV RunII:** W<sup>±</sup>W<sup>±</sup>jj WZjj <u>CMS-SMP-19-012</u> ZZjj <u>CMS-SMP-20-001</u> See Kenneth Long's <u>Talk</u>.

Dominated by statistics



VBS projections HL-LHC: W<sup>±</sup>W<sup>±</sup>jj <u>CMS-PAS-FTR-18-005</u> WZjj <u>CMS-PAS-FTR-18-038</u> ZZjj <u>CMS-PAS-FTR-18-014</u>

Dominated by systematics

Increased c.m. energy

Extended tracker coverage

25/01/2021

More statistics  $\rightarrow$  better calibration

 $\longrightarrow$ 

Increased cross section ~15-20%

- Better rejection of:
  - pile up jets,
  - additional leptons.

Reduction of experimental uncertainties.

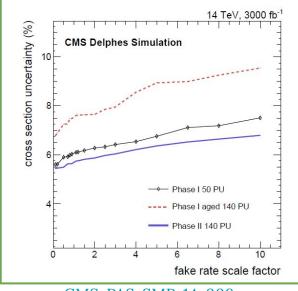


## $W^{\pm}W^{\pm}jj \ projections$

- Cross section O(1 fb), integrated luminosity increase
   → significant improvement
- **pile up** conditions: up to **<200** pp interactions> per bunch crossing;
- Full simulation of the **phase2 CMS** detector;

The **extended tracker** should improve the lepton identification → suppress contamination of ttbar,WZ, ZZ The **highly granular calorimeter** should significantly enhance the capability to observe this signal.

- **Uncertainties** as Yellow Report 18:
  - theoretical uncertainties  $\rightarrow \frac{1}{2}$
  - **experimental** uncertainties  $\rightarrow 1/\sqrt{L}$  until the achievable accuracy with the upgraded detector.

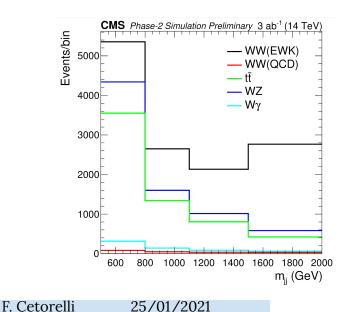

### Impact of systematic uncertainties

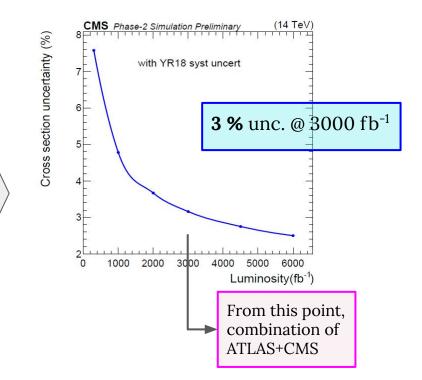
#### CMS PAS FTR-18-005

| Source of uncertainty               | Input    | $300 \text{ fb}^{-1}$ (1 year) | $3000 \text{ fb}^{-1}$ (10 years) |
|-------------------------------------|----------|--------------------------------|-----------------------------------|
| Statistical uncertainty             |          | 5.7%                           | 1.8%                              |
| Trigger efficiency (electron)       | 1.0%     | 0.5%                           | 0.2%                              |
| Trigger efficiency (muon)           | 1.0%     | 1.1%                           | 0.6%                              |
| Electron id + iso. efficiency       | 1.0%     | 0.6%                           | 0.3%                              |
| Muon id + iso. efficiency           | 0.5%     | 0.9%                           | 0.6%                              |
| Jet energy scale                    | 0.5-3.7% | 1.0%                           | 0.4%                              |
| b tag (stat. component)             | 1.0%     | 0.2%                           | 0.3%                              |
| b tag misidentification             | 1–2%     | 1.4%                           | 1.2%                              |
| Misidentified lepton from tt        | 5-20%    | 3.5%                           | 1.0%                              |
| Misidentified lepton from $W\gamma$ | 20%      | 0.3%                           | 0.1%                              |
| Stat. accuracy of $W\gamma$ sample  | 30%      | 0.4%                           | 0.1%                              |
| Total (stat + experimental syst)    |          | 7.6%                           | 3.2%                              |
| Luminosity                          | 1.0%     | 1.0%                           | 1.0%                              |
| Theoretical/QCD scale               | 3.0%     | 3.0%                           | 3.0%                              |
| Total (stat + syst + lumi + theory) |          | 8.2%                           | 4.5%                              |

Big impact:directly affects yields of signal events

Dependance of total cross section uncertainties on fake (misidentified) lepton scale factor @ 3000 fb<sup>-1</sup>.

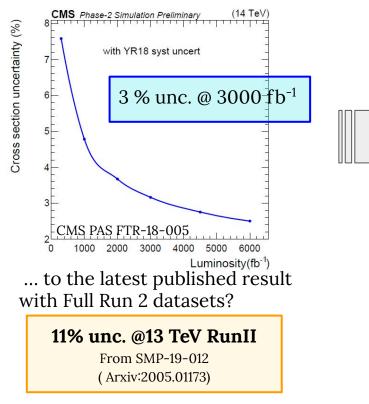




CMS-PAS-SMP-14-008

## $W^{\pm}W^{\pm}jj$ projections

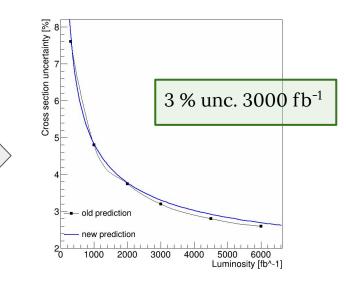
3 final states **independent channels**: **ee**, **em and mm**.

**mjj distribution** binned maximum likelihood fit.






CMS PAS FTR-18-005


## $W^{\pm}W^{\pm}jj$ revised projections

What if we rescale this projection....





25/01/2021



Latest published results looks compatible with projections.



## WZjj projections

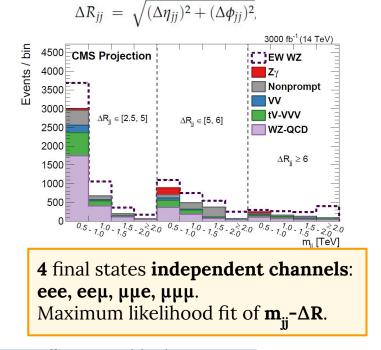
- The **cross sections** @  $\sqrt{s}$  = 14 TeV increase in general increase by 8 20% wrt 13 TeV:
  - $\circ \quad EW WZjj \rightarrow 16\%$
  - $\circ \quad \text{QCD WZ} \rightarrow \text{ 8\%.}$
- The **increase in the pseudorapidity** coverage increases the **yield** for different decay channels by **5–8%**.
- Lepton efficiency, PDF uncertainties, and other measurable and theoretical uncertainties → **1% level**.

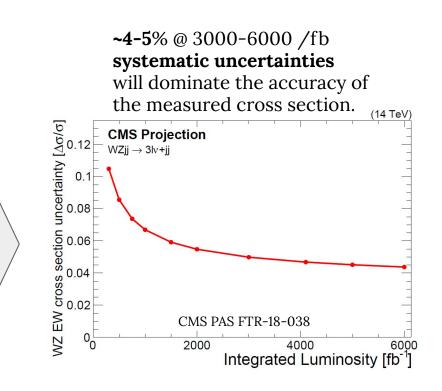
| Systematic Source        | Туре  | Amount, % |
|--------------------------|-------|-----------|
| Integrated luminosity    | Norm. | 1         |
| Nonprompt norm.          | Norm. | 10        |
| b-tagging                | Norm. | 1-3       |
| Electron scale and res.  | Shape | 1         |
| Muon efficiency and res. | Shape | 0.5       |
| MET                      | Shape | 1-4       |
| Other background theory  | Shape | 1-5       |
| QCD-WZjj PDF             | Shape | 1         |
| QCD-WZjj Scale           | Shape | 3-4       |
| EW-WZjj PDF              | Shape | 1         |
| EW-WZjj Scale            | Shape | 2-3       |
| Jet energy scale         | Shape | 1-3       |
| Jet energy resolution    | Shape | 1-4       |

Cross check the Delphes, generated for 14 TeV and PhaseII geometry, VS the FullSim used in Run2 and Phase1 geometry.

Use the MC 13 TeV samples, scaled for cross section, acceptance and luminosity increase.

F. Cetorelli


25/01/2021


12

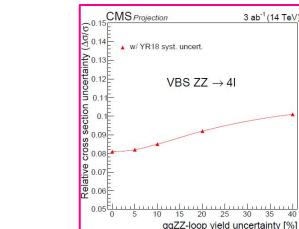
## WZjj projections

Relative fraction of EW process in WZjj production increases with increasing:

- 1. dijet mass
- 2. angular separation of the leading jets.








## ZZjj projections

Scaling the expected yields for the signal and the background processes @ 13 TeV phase 1, accounting for:

- Luminosity increase;
- Cross section increase;
- Detector acceptance → Signal yield increase up to 20%.
   QCD qqZZ → 10% higher than for the signal. ggZZ → less because more central.
- Uncertainties as Yellow Report 18:
  - **theoretical** uncertainties  $\rightarrow \frac{1}{2}$
  - **experimental** uncertainties  $\rightarrow 1/\sqrt{L}$  until the achievable accuracy with the upgraded detector.

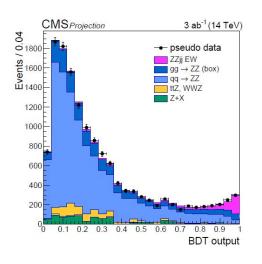
Most relevant: theory uncertainty on QCD ZZjj



EW ZZQCD qqZZQCD ggZZ $\sigma_{14 \, \text{TeV}} / \sigma_{13 \, \text{TeV}}$ 1.151.171.13

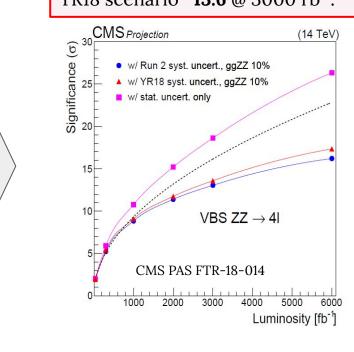
|                                         | EW ZZ | QCD qqZZ | QCD ggZZ |
|-----------------------------------------|-------|----------|----------|
| $ \eta  < 3.0(2.8)/ \eta  < 2.5(2.4)$   | 1.13  | 1.18     | 1.12     |
| $ \eta  < 4.0(2.8) /  \eta  < 2.5(2.4)$ | 1.21  | 1.33     | 1.15     |

F. Cetorelli


25/01/2021

CMS PAS FTR-18-014

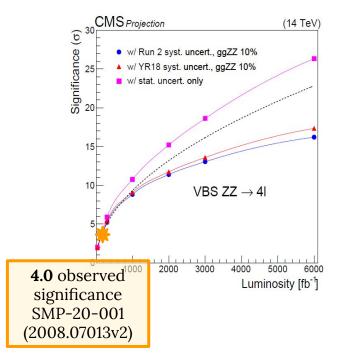
## ZZjj projections


**BDT** to disentangle the EW ZZjj component from the QCD one.

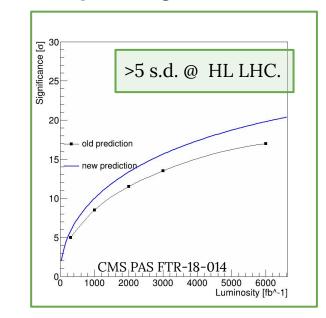
**BDT distribution** binned maximum likelihood fit.



25/01/2021

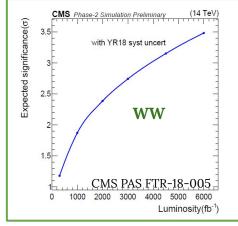






\*10% uncertainty in the QCD ggZZ background yield

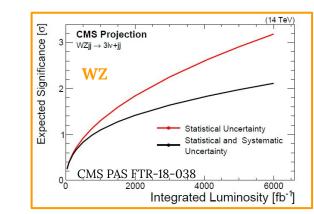
F. Cetorelli

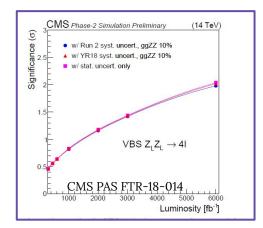
## ZZjj revised projections

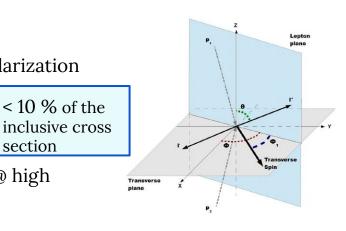



The current analysis use a **matrix element discriminant** (K<sub>D</sub>) (instead of a BDT) to separate the **signal** and the **QCD** background. This could explain the **gain** observed.




### **Polarization studies**


- Massive V bosons: 1 longitudinal (L) + 2 transverse (T) polarization mode.
- **★** Longitudinal component: directly related to
  - The Electroweak Spontaneous Symmetry Breaking section
  - $\circ~$  and to Higgs boson  $\rightarrow$  cancellation of divergences @ high energy.
- ★ **ZZ channel** particularly suitable: **complete reconstructions** of the final state particle.




F. Cetorelli

25/01/2021





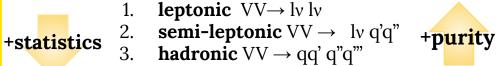


#### **Other effects**

HL-LHC would be a great place to study VBS.

- The **more signal** yield could allow:
  - $\circ$  division in more **categories**  $\rightarrow$  enhance final sensitivity
  - more raffinate Machine Learning techniques → to disentangle from the intrinsic QCD background.

- Better **detector performance** could suppress reducible backgrounds e.g.:
  - in W+W- (not observed yet) could help reducing the limiting top background.
  - Helps further the study semi-leptonic final state, which guarantees an higher statistics than the leptonic ones.



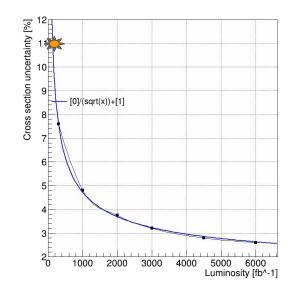

- ★ Vector Boson Scattering production of a pair of EWK bosons (VV) are rare process that allow precision measurements of the EW sector.
- ★ The VBS processes, **statistically limited** analysis at 13 TeV **RunII**, would benefit from the HL-LHC operation condition (14 TeV, 3000 fb<sup>-1</sup>):
  - **Better** constraint of **known** process (WW, WZ)
  - Measure of not yet observed processes e.g.
    - W+W-, ZZ ... ;
    - polarization cross section;
    - study different final state (semi-leptonic-hadronic);
    - EFT studies...
- **★** In this scenario, the **limiting** factor would be the **systematic uncertainties**:
  - A work toward the reduction of systematic, theoretical and experimental, would be of primary interest.

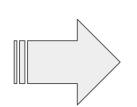


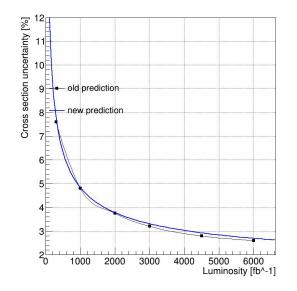
## Signature of VVjj

The two bosons may decay hadronically or leptonically, leading to 3 possible final states:




#### 6 fermions in the final state.

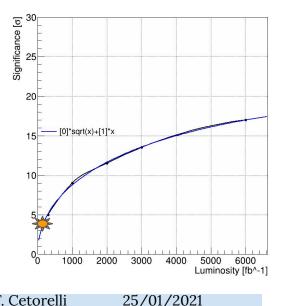

- 2 high energy jet (tag jets) from the scattering partons: ★
  - high **m<sub>ii</sub>** Ο
  - great gap in  $\eta$ ;
  - **no QCD** activity between them (leptonic final state). Ο

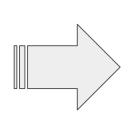

#### "Revision method"

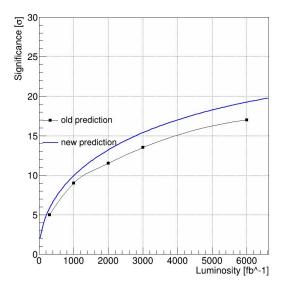
Simple method to have a feeling of the way of recent results impacts the projections.

- Fit the old distribution 1. with a suited function.
- 2. luminosity.
  - Extrapolate to run 2 **3**. Scale the function to the ratio err(actual res. run2)/err(extr. 137fb-1)



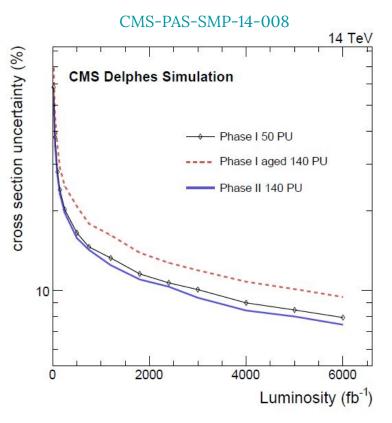




#### "Revision method"

Simple method to **have a feeling** of the way of recent results impacts the projections.

- Fit the old distribution 1. with a suited function.
- 3. 2. Extrapolate to run 2 luminosity.
- Scale the function to the ratio  $\sigma$ (actual res. run2)/ $\sigma$ (extr. 137fb-1)








F. Cetorelli

## WZ projections

