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VBS in HL-LHC (and Run3!) extremely exciting 

• Luminosity (x2 in Run3, x10 in HL-LHC): More data 
• Detectors (e.g CMS High-Granularity Endcap Calorimeter): Better data 
• Analysis: Squeeze the most out of bigger and better data! 

 
 
 
 
 
 
 

Figure 10: ROC curve for Keras models

For better comparison in the model performance, the ROC curves for both generator and reconstructed
level have been drawn in Figure 10. The random guess marking the line for which no discrimination power
among the two classes is available. The stronger a ROC curve is bend to the lower right corner, the better
separation there is. The AUC values for generator and reconstructed level are 0.705 and 0.702, respectively.
Therefore, no significant di↵erence in performance between generator and reconstructed level generated Monte
Carlo was found. However, when comparing to cos ✓⇤ only, this plot suggests that for both data levels additional
discrimination power is available. The various combinations of features were tried for the model to train on.
These all showed very similar results, ranging from AUC values of 0.662 up to 0.702. The gap between the
lower bound of these model outcomes and costhetastar is therefore minimal.

5 Classification with LoLa

To investigate whether better discrimination can be achieved, a more complex existing neural network archi-
tecture is tested. LoLa is written in Keras with a TensorFlow backend. The LoLa architecture [5] is a four layer
deep, feed-forward sequential network doing supervised learning on fixed size input vectors. It introduces two
novel layers, the Combination Layer (CoLa) and the Lorentz Layer (LoLa), which perform basic jet clustering
and substructure calculations as well as it implements the Minkowski metric. These two layers are followed by
two fully connected layers, consisting of 100 and 50 nodes respectively. As for the classification in the previous
section with the Keras model, the loss function is set to Caterogical Crossentropy and hidden layers have ReLu
activation functions. The output layer has Softmax activation function and the model adapts learning rate
parameters during training using the Adam optimizer.

The first of the two novel layers is CoLa, short for Combination Layer. From the Monte Carlo you now
first choose how many jet constituents (N) you want the network to see. By default N is set to 20, which are
the 20 hardest (highest pT ) constituents of an AK8 jet. These are reconstructed by clustering Particle Flow
(PF) particles using the anti-kT (AK) jet clustering algorithm with distance parameter R = 0.8. The CoLa
layer performs the following three tasks. The first output of the CoLa layer is the four momentum of the
full jet. This operation thus takes all the four momenta of the constituents and adds their components. The
second output is the four momentum for each jet constituent you feed it. This acts like the identity matrix in
which it passes all the constituents on. The third output contains linear combinations of the constituents. It
produces W sets of trainable linear combinations, the default number for W is 15. The idea is that it can act
like a groomer in which constituents can be down weighted, or groomed away by assigning a low sub weight
to it. The output then is M = 1+ N + W, columns. A depiction for which the 2 hardest jet constituents is
given in Figure 11. Note that there are in principle W sets of weights possible, only one set is depicted in this
figure.
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VBS in HL-LHC (and Run3!) extremely exciting 

• Luminosity (x2 in Run3, x10 in HL-LHC): More data 
• Detectors (e.g CMS High-Granularity Endcap Calorimeter): Better data 
• Analysis: Squeeze the most out of bigger and better data! 

ML crucial part of all three 

• Luminosity: Managing huge data rates 
• Detectors:   Reconstructing complex patterns in complex new detectors 
• Analysis:      Enhancing S/√B to tackle highest-background channels 

                    

• Can we dream about all-hadronic VBS? Longitudinal/transverse? 
 
 
 
 
 
 
 

Figure 10: ROC curve for Keras models

For better comparison in the model performance, the ROC curves for both generator and reconstructed
level have been drawn in Figure 10. The random guess marking the line for which no discrimination power
among the two classes is available. The stronger a ROC curve is bend to the lower right corner, the better
separation there is. The AUC values for generator and reconstructed level are 0.705 and 0.702, respectively.
Therefore, no significant di↵erence in performance between generator and reconstructed level generated Monte
Carlo was found. However, when comparing to cos ✓⇤ only, this plot suggests that for both data levels additional
discrimination power is available. The various combinations of features were tried for the model to train on.
These all showed very similar results, ranging from AUC values of 0.662 up to 0.702. The gap between the
lower bound of these model outcomes and costhetastar is therefore minimal.

5 Classification with LoLa

To investigate whether better discrimination can be achieved, a more complex existing neural network archi-
tecture is tested. LoLa is written in Keras with a TensorFlow backend. The LoLa architecture [5] is a four layer
deep, feed-forward sequential network doing supervised learning on fixed size input vectors. It introduces two
novel layers, the Combination Layer (CoLa) and the Lorentz Layer (LoLa), which perform basic jet clustering
and substructure calculations as well as it implements the Minkowski metric. These two layers are followed by
two fully connected layers, consisting of 100 and 50 nodes respectively. As for the classification in the previous
section with the Keras model, the loss function is set to Caterogical Crossentropy and hidden layers have ReLu
activation functions. The output layer has Softmax activation function and the model adapts learning rate
parameters during training using the Adam optimizer.

The first of the two novel layers is CoLa, short for Combination Layer. From the Monte Carlo you now
first choose how many jet constituents (N) you want the network to see. By default N is set to 20, which are
the 20 hardest (highest pT ) constituents of an AK8 jet. These are reconstructed by clustering Particle Flow
(PF) particles using the anti-kT (AK) jet clustering algorithm with distance parameter R = 0.8. The CoLa
layer performs the following three tasks. The first output of the CoLa layer is the four momentum of the
full jet. This operation thus takes all the four momenta of the constituents and adds their components. The
second output is the four momentum for each jet constituent you feed it. This acts like the identity matrix in
which it passes all the constituents on. The third output contains linear combinations of the constituents. It
produces W sets of trainable linear combinations, the default number for W is 15. The idea is that it can act
like a groomer in which constituents can be down weighted, or groomed away by assigning a low sub weight
to it. The output then is M = 1+ N + W, columns. A depiction for which the 2 hardest jet constituents is
given in Figure 11. Note that there are in principle W sets of weights possible, only one set is depicted in this
figure.
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VBS extremely exciting from ML point of view 
 
 
 
 
 

Forward (quark) jets 
• Quark/gluon separation 
• Jet resolution (HGCAL!) 
• Pileup mitigation 

V
V

q

q

Vector-bosons 
• Hadronic final states(?!) 
• Jet substructure 
• Longitudinal/transverse 

cds.cern.ch/record/2714080

Why VBS is exciting from ML perspective: 

Event 
• A lot of event information 
• BSM at high E, SM TT as background? 



Detector 
• Data rate O(100)Tb/s 
• O(10) ns latency 
• Better endcap calorimetry

Forward jet  
resolution
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Figure 10: ROC curve for Keras models

For better comparison in the model performance, the ROC curves for both generator and reconstructed
level have been drawn in Figure 10. The random guess marking the line for which no discrimination power
among the two classes is available. The stronger a ROC curve is bend to the lower right corner, the better
separation there is. The AUC values for generator and reconstructed level are 0.705 and 0.702, respectively.
Therefore, no significant di↵erence in performance between generator and reconstructed level generated Monte
Carlo was found. However, when comparing to cos ✓⇤ only, this plot suggests that for both data levels additional
discrimination power is available. The various combinations of features were tried for the model to train on.
These all showed very similar results, ranging from AUC values of 0.662 up to 0.702. The gap between the
lower bound of these model outcomes and costhetastar is therefore minimal.

5 Classification with LoLa

To investigate whether better discrimination can be achieved, a more complex existing neural network archi-
tecture is tested. LoLa is written in Keras with a TensorFlow backend. The LoLa architecture [5] is a four layer
deep, feed-forward sequential network doing supervised learning on fixed size input vectors. It introduces two
novel layers, the Combination Layer (CoLa) and the Lorentz Layer (LoLa), which perform basic jet clustering
and substructure calculations as well as it implements the Minkowski metric. These two layers are followed by
two fully connected layers, consisting of 100 and 50 nodes respectively. As for the classification in the previous
section with the Keras model, the loss function is set to Caterogical Crossentropy and hidden layers have ReLu
activation functions. The output layer has Softmax activation function and the model adapts learning rate
parameters during training using the Adam optimizer.

The first of the two novel layers is CoLa, short for Combination Layer. From the Monte Carlo you now
first choose how many jet constituents (N) you want the network to see. By default N is set to 20, which are
the 20 hardest (highest pT ) constituents of an AK8 jet. These are reconstructed by clustering Particle Flow
(PF) particles using the anti-kT (AK) jet clustering algorithm with distance parameter R = 0.8. The CoLa
layer performs the following three tasks. The first output of the CoLa layer is the four momentum of the
full jet. This operation thus takes all the four momenta of the constituents and adds their components. The
second output is the four momentum for each jet constituent you feed it. This acts like the identity matrix in
which it passes all the constituents on. The third output contains linear combinations of the constituents. It
produces W sets of trainable linear combinations, the default number for W is 15. The idea is that it can act
like a groomer in which constituents can be down weighted, or groomed away by assigning a low sub weight
to it. The output then is M = 1+ N + W, columns. A depiction for which the 2 hardest jet constituents is
given in Figure 11. Note that there are in principle W sets of weights possible, only one set is depicted in this
figure.
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Detector 

•Improve forward jet resolution  
and reducing pileup  

•Limited bandwidth and time 
•High radiation 

→ ML on ASICs 
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Novel technology for CMS endcap calorimeter:  
52 layers with unprecedented number of readout channels (6M)!

CMS HGCAL TDR

Example: 
High-granularity calorimeter @ HL-LHC

CMS HGCAL TDR 

q

 CMS Endcap High-Granularity Calorimeter (1.5<η<3) 
• Unprecedented transverse/longitudinal segmentation  
• Shower development+narrowness of VBS jets 

 
 
 
 
 
 
 
 
 
 
 
 
 

• 52 layers, 6 million silicon channels, limited output bandwidth 
• Operate at -30℃ → need low-power on-ASIC preprocessing
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A.-M. Magnan Event displays of VBF Hgg jets with 140 PU CERN, 21/03/2015 8 / 31

Figure A.1: Display of a VBF jet and a high pT photon in 9 layers of CE-E. The energy of individual reconstructed hits are colour coded on
a logarithmic scale. Text in Section 1.2 describes details of what can be seen.

Forward jet  
(2 charged pions+𝛾) 
 Within 1 cm!
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Optimise information output using ML!  Maximise resolution on extremely low power. 
 
 
 
 
 

On ASIC On FPGA

Encoder architecture

4

39 bits available  
for output

Encoder architecture

4

ENCODE DECODE

ECON FastML 2020 
Transfer data to L1

Bottleneck 
(lower dim.  

space)

11

On-detec tor :  HGCAL

https://indico.cern.ch/event/924283/contributions/4105329/attachments/2152250/3630590/encoder_asic_fastml2020.pdf
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L1 trigger 

• Maximise VBS signal acceptance 
through dedicated triggers 

•High accuracy + low latency 
 
 

 
→ ML on FPGA 
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Encoder architecture

4

DECODE

 After energy deposits are decoded on FPGFA, need to cluster! 
• Exploring Graph Neural Network to cluster energy deposits into disentangled showers from individual particles 
• Difficult to achieve desired throughput (huge input!), but has been demonstrated on reduced input sizes 

 
Good energy resolution and clustering important for VBS jets in 200 PU environment! 
 
 
 
 

arxiv:2008.03601 

ENCODED 
DATA

On FPGA

DOI:10.1140 

2 charged pions

https://arxiv.org/abs/2008.03601
https://link.springer.com/article/10.1140/epjc/s10052-019-7113-9
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ROC	curves	and	
correlations	(medium	pT)
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Left: Quark-jet tagging efficiency as a function of gluon-jet rejection, for each individual input variable 
in the medium pT range. The performance is evaluated using Pythia QCD di-jet Monte-Carlo simulation. 
Right: correlation coefficient among input variables for quark(top) and gluon(bottom) initiated jets.

With good endcap shower reconstruction:  
• “Cheap” ways to get q/g separation at L1, eg. simple 5 input BDT (2017) 
• High-resolution inputs + better DNN (Kallonen et. al.), q-tag at L1 @ HL-LHC 
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Quark-gluon discrimination variables in medium pT, derived from Pythia QCD di-jet Monte-Carlo simulation. From 
left top to middle bottom, major axis of the jet ellipse, minor axis, charged particle multiplicity, DR weighted pT sum 
and ptD are shown. The red (blue) histogram represents the jets matched to the gluon (light-flavour quark) at the 
generator level. The matching is taken for the most closest partons to the jet. The right bottom plot shows the output 
BDT score distribution based on these input variables.

https://indico.cern.ch/event/864506/contributions/3682435/


CMS Level-1 in HL-LHC has a lot to offer VBS
• High resolution forward calorimeter  
→ lower mqq̅  thresholds? q/g-tag?
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Figure 1.3: Functional diagram of the CMS L1 Phase-2 upgraded trigger design. The Phase-2 L1
trigger receives inputs from the calorimeters, the muon spectrometers and the track finder. The
calorimeter trigger inputs include inputs from the barrel calorimeter (BC), the high-granularity
calorimeter (HGCAL) and the hadron forward calorimeter (HF). It is composed of a barrel
calorimeter trigger (BCT) and a global calorimeter trigger (GCT). The muon trigger receives in-
put from various detectors, including drift tubes (DT), resistive plate chambers (RPC), cathode
strip chambers (CSC), and gas electron multipliers (GEM). It is composed of a barrel layer-1
processor and muon track finders processing data from three separate pseudorapidity regions
and referred to as BMTF, OMTF and EMTF for barrel, overlap and endcap, respectively. The
muon track finders transmit their muon candidates to the global muon trigger (GMT), where
combination with tracking information is possible. The track finder (TF) provides tracks to
various parts of the design including the global track trigger (GTT). The correlator trigger (CT)
in the center (yellow area) is composed of two layers dedicated to particle-flow reconstruction.
All objects are sent to the global trigger (GT) issuing the final L1 trigger decision. External
triggers feeding into the GT are also shown (more in Section 2.6) including potential upscope
(mentioned as ”others”) such as inputs from the MTD. The dashed lines represent links that
could be potentially exploited (more details are provided in the text). The components under
development within the Phase-2 L1 trigger project are grouped in the same area (blue area).
The various levels of processing are indicated on the right: trigger primitives (TP), local and
global trigger reconstruction, particle-flow trigger reconstruction (PF) and global decision.

processors as part of the detector backend. The reconstructed track parameters and track re-
construction quality flags are provided to the trigger system to achieve precise vertex recon-
struction and matching with calorimeter and muon objects. This key feature maximizes the
trigger efficiency while keeping the trigger rate within the allowed budget. A global track trig-
ger (GTT) will be included, to reconstruct the primary vertices of the event along with tracker-
only based objects, such as jets and missing transverse momentum. The GTT can also be used
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could be potentially exploited (more details are provided in the text). The components under
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The various levels of processing are indicated on the right: trigger primitives (TP), local and
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construction quality flags are provided to the trigger system to achieve precise vertex recon-
struction and matching with calorimeter and muon objects. This key feature maximizes the
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trigger receives inputs from the calorimeters, the muon spectrometers and the track finder. The
calorimeter trigger inputs include inputs from the barrel calorimeter (BC), the high-granularity
calorimeter (HGCAL) and the hadron forward calorimeter (HF). It is composed of a barrel
calorimeter trigger (BCT) and a global calorimeter trigger (GCT). The muon trigger receives in-
put from various detectors, including drift tubes (DT), resistive plate chambers (RPC), cathode
strip chambers (CSC), and gas electron multipliers (GEM). It is composed of a barrel layer-1
processor and muon track finders processing data from three separate pseudorapidity regions
and referred to as BMTF, OMTF and EMTF for barrel, overlap and endcap, respectively. The
muon track finders transmit their muon candidates to the global muon trigger (GMT), where
combination with tracking information is possible. The track finder (TF) provides tracks to
various parts of the design including the global track trigger (GTT). The correlator trigger (CT)
in the center (yellow area) is composed of two layers dedicated to particle-flow reconstruction.
All objects are sent to the global trigger (GT) issuing the final L1 trigger decision. External
triggers feeding into the GT are also shown (more in Section 2.6) including potential upscope
(mentioned as ”others”) such as inputs from the MTD. The dashed lines represent links that
could be potentially exploited (more details are provided in the text). The components under
development within the Phase-2 L1 trigger project are grouped in the same area (blue area).
The various levels of processing are indicated on the right: trigger primitives (TP), local and
global trigger reconstruction, particle-flow trigger reconstruction (PF) and global decision.

processors as part of the detector backend. The reconstructed track parameters and track re-
construction quality flags are provided to the trigger system to achieve precise vertex recon-
struction and matching with calorimeter and muon objects. This key feature maximizes the
trigger efficiency while keeping the trigger rate within the allowed budget. A global track trig-
ger (GTT) will be included, to reconstruct the primary vertices of the event along with tracker-
only based objects, such as jets and missing transverse momentum. The GTT can also be used
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• High resolution forward calorimeter  
→ lower mqq̅  thresholds? q/g-tag?

• Tracking (η < 2.4)  
→ charge multiplicity for q/g ++?

• ParticleFlow at Level 1 
→ substructure algorithms for V→qq̅ and q/g?

• Study DNN for jet substructure tagging at L1 

• AI can provide highly efficient VBS tags! 
Boils down to latency, resources and bandwidth

L1 t r igger :  G lobal  tag
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8 Chapter 1. Introduction and overview

Figure 1.3: Functional diagram of the CMS L1 Phase-2 upgraded trigger design. The Phase-2 L1
trigger receives inputs from the calorimeters, the muon spectrometers and the track finder. The
calorimeter trigger inputs include inputs from the barrel calorimeter (BC), the high-granularity
calorimeter (HGCAL) and the hadron forward calorimeter (HF). It is composed of a barrel
calorimeter trigger (BCT) and a global calorimeter trigger (GCT). The muon trigger receives in-
put from various detectors, including drift tubes (DT), resistive plate chambers (RPC), cathode
strip chambers (CSC), and gas electron multipliers (GEM). It is composed of a barrel layer-1
processor and muon track finders processing data from three separate pseudorapidity regions
and referred to as BMTF, OMTF and EMTF for barrel, overlap and endcap, respectively. The
muon track finders transmit their muon candidates to the global muon trigger (GMT), where
combination with tracking information is possible. The track finder (TF) provides tracks to
various parts of the design including the global track trigger (GTT). The correlator trigger (CT)
in the center (yellow area) is composed of two layers dedicated to particle-flow reconstruction.
All objects are sent to the global trigger (GT) issuing the final L1 trigger decision. External
triggers feeding into the GT are also shown (more in Section 2.6) including potential upscope
(mentioned as ”others”) such as inputs from the MTD. The dashed lines represent links that
could be potentially exploited (more details are provided in the text). The components under
development within the Phase-2 L1 trigger project are grouped in the same area (blue area).
The various levels of processing are indicated on the right: trigger primitives (TP), local and
global trigger reconstruction, particle-flow trigger reconstruction (PF) and global decision.

processors as part of the detector backend. The reconstructed track parameters and track re-
construction quality flags are provided to the trigger system to achieve precise vertex recon-
struction and matching with calorimeter and muon objects. This key feature maximizes the
trigger efficiency while keeping the trigger rate within the allowed budget. A global track trig-
ger (GTT) will be included, to reconstruct the primary vertices of the event along with tracker-
only based objects, such as jets and missing transverse momentum. The GTT can also be used

O(1000) algorithms  
in parallel on ~10 FPGAs 

12.5 µs

Trigger 
accept/reject
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High Level Trigger 

• Maximize signal acceptance 
with all the things we couldn’t afford 
to do at L1 (e.g. jet substructure) 

• More time, limited bandwidth 
 

 
 

 
→ ML on GPU 



Amount of data we can store for use in analysis 
limited by bandwidth,  O(10) GB/s to Tier-0 

• 300 ms to decide keep/reject 
• Running thousands of “modules”  

on many collision events in parallel 

High Leve l  Tr igger

17

Bandwidth (kB/s) = Event rate (kHz)  x  Event size (kB)
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Particle Flow is highest resolution reconstruction at 
HLT. Slow, can’t run on all events! Currently only PF 
on 17% of total 

• High resolution, but small rate 

HLT:  More  Par t ic le  F low

18



Particle Flow is highest resolution reconstruction at 
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30k cores, single-threaded 
→ ~300 ms available per event 

Each node (16/20 cores) equipped with one GPU

Events from L1 @ 750 kHz

CPU tasks GPU tasks

300 ms

Raw data Raw data

Pixel tracks 
~ 48 ms

Pixel tracks 
~10 ms

Faster  
on GPU

Pixel tracks

Particle Flow

Free up 
CPU

*Disclaimer:  
Rough estimates  

Data transfer
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30k cores, single-threaded 
→ ~300 ms available per event 

Each node (16/20 cores) equipped with one GPU

Events from L1 @ 750 kHz
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Raw data Raw data

Pixel tracks 
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Pixel tracks 
~10 ms
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More PF means cleaner VBS triggering! 
• Especially for all-hadronic VBS, jet substructure 

at HLT important! 

Transfer data GPU → CPU expensive, can we avoid 
it by doing PF on GPU?

HLT:  More  Par t ic le  F low
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Fig. 1 A simulated tt event from the MLPF dataset with 200 PU interactions. The input tracks are shown in gray, with the trajectory curvature
being defined by the inner and outer h ,f coordinates. Electromagnetic (hadron) calorimeter clusters are shown in blue (orange), with the size
corresponding to cluster energy for visualization purposes. We also show the locations of the generator particles (all types) with red cross markers.
The radii and thus the x,y-coordinates of the tracker, ECAL and HCAL surfaces are arbitrary for visualization purposes.

We also store the PF candidates reconstructed by
DELPHES for comparison purposes. The DELPHES rule-
based PF algorithm is described in detail in Ref. [11], iden-
tifying charged and neutral hadrons based on track and
calorimeter cluster overlaps and energy subtraction. Pho-
tons, electrons and muons are identified by DELPHES based
on the generator particle associated to the corresponding
track or calorimeter cluster. Each event is now fully char-
acterized by the set of generator particles Y = {yi} (target
vectors), the set of detector inputs X = {xi} (input vectors),
with

yi = [PID, pT,E,h ,f ,q] , (1)
xi = [type, pT,EECAL,EHCAL,h ,f ,houter,fouter,q] , (2)

PID 2 {charged hadron,neutral hadron,g,e±,µ±} (3)
type 2 {track,cluster} . (4)

For input tracks, only the type, pT, h , f , houter, fouter, and
q features are filled. Similarly, for input clusters, only the
type, EECAL, EHCAL, h and f entries are filled. Unfilled fea-
tures for both tracks and clusters are set to zero. In future
iterations of MLPF, it may be beneficial to represent input
elements of different type with separate data matrices to im-
prove the computational efficiency of the model.

Functionally, the detector is modelled in simulation by a
function S(Y ) = X that produces a set of detector signals
from the generator-level inputs for an event. Reconstruc-
tion imperfectly approximates the inverse of that function
R ' S

�1(X) = Y . In the following section, we approximate
the reconstruction as set-to-set translation and implement a
baseline MLPF reconstruction using graph neural networks.

arXiv:2101.08578 

Deep Neural Networks as “fast” approximations of 
classical ParticleFlow 

• In CUDA for free (naturally runs on GPU) 
• Inherently parallelizeable, can take advantage of 

GPU acceleration 
• High accuracy in high PU environment 7
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Fig. 4 True and predicted particle multiplicity for MLPF and DELPHES
PF for charged hadrons (upper) and neutral hadrons (lower). Both mod-
els show a high degree of correlation (r) between the generated and
predicted particle multiplicity, with the MLPF model reconstructing
the charged and neutral particle multiplicitly with better resolution (s ).

we observe a similar result for the energy-dependent effi-
ciency and fake rate of neutral hadrons. Both algorithms
exhibit a turn-on at low energies and show a constant be-
haviour at high energies, with MLPF being comparable or
slightly better than the rule-based PF baseline. Furthermore,
we see on Figs. 8 and 9 that the energy, energy (pT) and an-
gular resolution of the MLPF algorithm are generally com-
parable to the baseline for neutral (charged) hadrons.

Fig. 5 Particle identification confusion matrices with gen-level parti-
cles as the ground truth, with the baseline DELPHES PF (upper) MLPF
(lower). The rows have been normalized to unit probability, corre-
sponding to normalizing the dataset according to the generated PID.

Overall, these results demonstrate that formulating PF
reconstruction as a multi-task ML problem of simultane-
ously identifying charged and neutral hadrons in a high-
PU environment and predicting their momentum may offer
comparable or improved physics performance over hand-
written algorithms in the presence of sufficient simulation
samples and careful optimization. The performance charac-
teristics for the baseline and the proposed MLPF model are
summarized in Table 1.

https://arxiv.org/abs/2101.08578
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30k cores, single-threaded (~1 ev/thread, in reality 
hyper-threaded):  

→ ~300 ms available per event 
Each node (16/20 cores) equipped with one GPU

Events from L1 @ 750 kHz

CPU tasks GPU tasks

300 ms

Raw data Raw data

Pixel tracks 
~ 48 ms

Pixel tracks 
~10 ms

Pixel tracks

Particle Flow

Free up 
CPU

Particle Flow

Data transfer

 
Dedicated VBS PF-based triggers 

• q/g is an obvious one 
• Jet substructure for V→qq 
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Figure 10: ROC curve for Keras models

For better comparison in the model performance, the ROC curves for both generator and reconstructed
level have been drawn in Figure 10. The random guess marking the line for which no discrimination power
among the two classes is available. The stronger a ROC curve is bend to the lower right corner, the better
separation there is. The AUC values for generator and reconstructed level are 0.705 and 0.702, respectively.
Therefore, no significant di↵erence in performance between generator and reconstructed level generated Monte
Carlo was found. However, when comparing to cos ✓⇤ only, this plot suggests that for both data levels additional
discrimination power is available. The various combinations of features were tried for the model to train on.
These all showed very similar results, ranging from AUC values of 0.662 up to 0.702. The gap between the
lower bound of these model outcomes and costhetastar is therefore minimal.

5 Classification with LoLa

To investigate whether better discrimination can be achieved, a more complex existing neural network archi-
tecture is tested. LoLa is written in Keras with a TensorFlow backend. The LoLa architecture [5] is a four layer
deep, feed-forward sequential network doing supervised learning on fixed size input vectors. It introduces two
novel layers, the Combination Layer (CoLa) and the Lorentz Layer (LoLa), which perform basic jet clustering
and substructure calculations as well as it implements the Minkowski metric. These two layers are followed by
two fully connected layers, consisting of 100 and 50 nodes respectively. As for the classification in the previous
section with the Keras model, the loss function is set to Caterogical Crossentropy and hidden layers have ReLu
activation functions. The output layer has Softmax activation function and the model adapts learning rate
parameters during training using the Adam optimizer.

The first of the two novel layers is CoLa, short for Combination Layer. From the Monte Carlo you now
first choose how many jet constituents (N) you want the network to see. By default N is set to 20, which are
the 20 hardest (highest pT ) constituents of an AK8 jet. These are reconstructed by clustering Particle Flow
(PF) particles using the anti-kT (AK) jet clustering algorithm with distance parameter R = 0.8. The CoLa
layer performs the following three tasks. The first output of the CoLa layer is the four momentum of the
full jet. This operation thus takes all the four momenta of the constituents and adds their components. The
second output is the four momentum for each jet constituent you feed it. This acts like the identity matrix in
which it passes all the constituents on. The third output contains linear combinations of the constituents. It
produces W sets of trainable linear combinations, the default number for W is 15. The idea is that it can act
like a groomer in which constituents can be down weighted, or groomed away by assigning a low sub weight
to it. The output then is M = 1+ N + W, columns. A depiction for which the 2 hardest jet constituents is
given in Figure 11. Note that there are in principle W sets of weights possible, only one set is depicted in this
figure.

8

  

cos(θ*)   
DNN

Offline analysis 

• Maximize S/B for precision 
measurements 

 
 

 
→ “Classical” ML on CPU/GPU 
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Run 3/HL-LHC: Huge lumi increase at ~same C-O-M energy  
 
BSM bump hunts →  precision measurements targeting BSM. 
E.g interference in 2→2 scattering 

• Quartic coupling 
• Higgs without Higgs 
• Polarisation fractions (vs E) 
• BSM enhancements 

At E≫mV, BSM mainly couples to WL 
• 90% SM is TT (mVV > 250 GeV), irreducible background! 

Can we do  WT vs. WL? (See Kenneth's talk) 

 
 
 
 
 
 

3 Vector Boson Scattering
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Figure 3.5: Dependency of the cross section of all polarization combinations of
the scattering WZ ! WZ on the center-of-mass energy Ecm. Full lines show the
dependency including a SM-like Higgs boson and dashed lines for the case without a
Higgs boson. Blue lines show the scattering of purely longitudinal boson polarization
while all other polarization combinations are shown in gray. Cross sections are
calculated using the MadGraph5_aMC@NLO Monte Carlo event simulator (see
Chapter 5).

introduced via the Higgs boson. These cancel the increase leading to a constant cross
section. This can be seen in Figure 3.5 for all different helicity combinations for the
scattering WZ ! WZ. The violation of unitarity can be seen in the increase of the
cross section over the center-of-mass energy. As shown only the scattering of purely
longitudinal bosons in the Higgs-less case show this behavior.

In Figure 3.6 the scattering of longitudinal bosons is depicted for different boson
combinations. It can be seen that the violation of unitarity occurs for all boson com-
binations. However, none of the processes including the SM Higgs boson shows this
increase in �.

This behavior motivates a more intensive study of the polarizations in VBS, in
particular the scattering of longitudinal bosons.

3.2.1 Change of the polarization state in vector boson scattering

For the scattering process itself it is worthwhile to notice that the bosons are allowed
to change their helicity while interacting with each other. The cross sections for this
are depicted in Figure 3.7 for different boson combinations at a center-of-mass energy
of the di-boson system of Ecm = 250 GeV. The mass of the SM Higgs boson is set to
mH = 126 GeV. In order to avoid divergences at least one of the final state bosons
is required to have pT > 1 GeV. It can be seen that the probability for a change
in helicity is negligible if only W

± bosons are involved. For W
±

W
±

! W
±

W
± and

W
±

W
⌥

! W
±

W
⌥ the spin properties can be assumed to be conserved while scattering.

In W
±

W
±

! W
±

W
± the rows in Figure 3.7a which correspond to the W

±
T

W
±
L

and W
±
L

W
±
T

initial states, are identical. This behavior is expected since the bosons are
identical and the order is arbitrary. The argument also applies to the columns with the
corresponding final states. In this boson combination the difference between dominant
and suppressed boson helicity combinations is the largest, spanning over ten orders of
magnitude in cross section.

16

Polar iza t ion  in  VBS

https://indico.cern.ch/event/980773/contributions/4134827/
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All-hadronic VBS as a “golden channel” for polarization (don’t laugh)? 
• WL WL  small → BR(V→qq) 
• Access to both fermions (caveat: charge) 
• Inference grows with energy → boosted jets 
• q-tag on forward jets + two tagged V-jets 
• Access polarisation both through forward q-jets + vector bosons 

 
Two-step problem 

• Discriminate VBS from QCD VV 
• Discriminate WT from WL 

Two powerful tests of SM that can be made feasible by ML  
• Crossection measurement in WL enriched phase space 
• Measurement of helicity fractionsT H E A  K .  Å R R E S T A D
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WT vs. WL discriminating power observed in jet substructure variables 
• WT decay products preferentially (anti-)parallel to W momentum 
→ asymmetric pT between subjects or overlapping partons (lab frame) 

Jet  substructure techniques  
• Grooming: Remove soft+wide angle radiation (bad for asymmetric pT) 
• N-subjettiness: Probability for 2 axes within jet (bad for overlapping partons)
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Probability of jet  
having N subjets, 𝝉N 
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N-subjettiness
• pT-weighted sum over all jet constituents of 

the distance w.r.t the closest of N axes in a jet 
 
 

- Axis are obtained by undoing last (N-1) 
steps of jet clustering algorithm 

- Small !N indicates compatibility with N axes 
hypothesis 

• To discriminate 2-prong W/Z jets from  
1-prong q/g jets, use ratio:


- !2/!1 (!21)  

• To discriminate 3-prong top jets from  
1-prong or 2 prong jets, use ratio:


- !3/!1 (!31) or 

- !3/!2 (!32) 

Work in progress

Signal
QCD

Distance between momentum of  
constituent k w.r.t momentum of  
rest-frame subjet N

Each constituent assigned to nearest subjet!

!21 < 0.5

1 jet axis 
→ small 𝜏1  

2 jet axis  
→ small 𝜏2

Are there “subjets” → n-subjettinessJet mass resolution → Pruning

Initial jet
Remove  

soft/wide-anglePruned jet

C/A

pT1/pT12 < zcut or ΔR12 < Rcut

Polar iza t ion  in  VBS
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WT vs. WL discriminating power observed in jet substructure variables 
• WT decay products preferentially (anti-)parallel to W momentum 
→ asymmetric pT between subjects or overlapping partons (lab frame) 

Jet  substructure techniques  
• Grooming: Remove soft+wide angle radiation (bad for asymmetric pT) 
• N-subjettiness: Probability for 2 axes within jet (bad for overlapping partons)

cds:2650187 

Polar iza t ion  in  VBS

https://cds.cern.ch/record/2650187
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WT looks 1-prong, hard to tell apart from q/g!  
• Need dedicated substructure algorithms or 

 jet-constituent based DNN to pick up all correlations 

Also q/g discrimination with jet substructure,  
• Same architecture for q/g? 
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10 5 Algorithms for W jet identification

the jet charge, the planar flow, the number of jet constituents, DR between subjets, sensitivity
of trimmed grooming, and the number of primary pp interaction vertices. The MLP neural
network is trained using a signal sample from a SM Higgs-like resonance decaying to a pair of
longitudinally polarized W bosons and a background sample of W+jets generated with MAD-
GRAPH, splitting the events equally in training and test event samples to compute the ROC
curve. The ROC curves obtained from the multivariate methods are shown in Fig. 3. Com-
pared to the performance of t2/t1, a small improvement is obtained using such multivariate
discriminators. This can be understood, because we find a large linear correlation between
t2/t1, which is the most sensitive variable over a large range of efficiencies, and most of the
other observables. We therefore focus in the following of this paper on a baseline tagger based
on t2/t1 and point out that, not considering systematic uncertainties, there is potential gain in
using multivariate discriminators.

The comparison above is performed after requiring the pruned jet mass to lie in the W boson
mass window. Since all substructure variables are correlated with the jet mass, it is important to
note that the variable comparison shown in Fig. 3 depends strongly on the choice of the primary
discriminant. When the ungroomed jet mass is the primary discriminant, a combination with
other variables provides a larger increase in discrimination, although the overall performance
is still inferior to the default choice of the pruned jet mass and t2/t1.

5.3 Performance in simulation

In this section we examine the simulated pT and PU dependence of the W tagging efficiency.
Efficiencies are defined for a pruned jet mass of 60 < mjet < 100 GeV, and N-subjettiness ratio
of t2/t1 < 0.5.
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Figure 4: Systematic effects on the performance of the pruned jet mass and t2/t1 W-tagging al-
gorithm in the high jet pT bin of 400–600 GeV. The performance of the pruned jet mass selection
60 < mjet < 100 GeV in the various scenarios is indicated as a filled circle. The performance of
the combination of 60 < mjet < 100 GeV and t2/t1 < 0.5 is indicated as a filled rectangle. The
lines correspond to the ROC curve of a selection on t2/t1 in addition to 60 < mjet < 100 GeV.
The solid line corresponds (in both parts) to the standard scenario with an average of 22 pileup
interactions and longitudinally polarized W bosons (WL).

In Fig. 4, we compare systematic effects in terms of change in the ROC response in the dijet final
state for 400 < pT < 600 GeV. In contrast to Fig. 3, where just the performance of other variables
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Graph Neural Network optimal architecture for jet constituents 
(sparse, unordered) 

• Each node is feature vector (e.g constituent 4-vector) 
• Connected through edges where message passing can occur 

 
 
 
 
 
 

v1 = (E1,px,1,py,1,,pz,1)
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Graph Neural Network optimal architecture for jet constituents 
(sparse, unordered) 

• Each node is feature vector (e.g constituent 4-vector) 
• Connected through edges where message passing can occur 
• New representation of node created based on information 

gathered across graph 
• Inference at each node using input features and learned 

representation 
 
 
 

v1'

v2'

v3'vʹ5 = f ⃗́ 5(m1→5,…,m6→5)

m1→5 = g(v⃗1,v⃗5)
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Graph Neural Network optimal architecture for jet constituents 
(sparse, unordered) 

• Each node is feature vector (e.g constituent 4-vector) 
• Connected through edges where message passing can occur 
• New representation of node created based on information 

gathered across graph 
• Inference at each node using input features and learned 

representation 

Can be defined as N-output multi-classifier  
• WT, WL, q, g… 

Jet constituents good to pick up correlations, but almost always 
good to extend base by adding high-level features  

• Energy correlation functions, 𝛕N, groomed masses 
 
 

v1'

v2'

v3'vʹ5 = f ⃗́ 5(m1→5,…,m6→5)

m1→5 = g(v⃗1,v⃗5)
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Figure 10: ROC curve for Keras models

For better comparison in the model performance, the ROC curves for both generator and reconstructed
level have been drawn in Figure 10. The random guess marking the line for which no discrimination power
among the two classes is available. The stronger a ROC curve is bend to the lower right corner, the better
separation there is. The AUC values for generator and reconstructed level are 0.705 and 0.702, respectively.
Therefore, no significant di↵erence in performance between generator and reconstructed level generated Monte
Carlo was found. However, when comparing to cos ✓⇤ only, this plot suggests that for both data levels additional
discrimination power is available. The various combinations of features were tried for the model to train on.
These all showed very similar results, ranging from AUC values of 0.662 up to 0.702. The gap between the
lower bound of these model outcomes and costhetastar is therefore minimal.

5 Classification with LoLa

To investigate whether better discrimination can be achieved, a more complex existing neural network archi-
tecture is tested. LoLa is written in Keras with a TensorFlow backend. The LoLa architecture [5] is a four layer
deep, feed-forward sequential network doing supervised learning on fixed size input vectors. It introduces two
novel layers, the Combination Layer (CoLa) and the Lorentz Layer (LoLa), which perform basic jet clustering
and substructure calculations as well as it implements the Minkowski metric. These two layers are followed by
two fully connected layers, consisting of 100 and 50 nodes respectively. As for the classification in the previous
section with the Keras model, the loss function is set to Caterogical Crossentropy and hidden layers have ReLu
activation functions. The output layer has Softmax activation function and the model adapts learning rate
parameters during training using the Adam optimizer.

The first of the two novel layers is CoLa, short for Combination Layer. From the Monte Carlo you now
first choose how many jet constituents (N) you want the network to see. By default N is set to 20, which are
the 20 hardest (highest pT ) constituents of an AK8 jet. These are reconstructed by clustering Particle Flow
(PF) particles using the anti-kT (AK) jet clustering algorithm with distance parameter R = 0.8. The CoLa
layer performs the following three tasks. The first output of the CoLa layer is the four momentum of the
full jet. This operation thus takes all the four momenta of the constituents and adds their components. The
second output is the four momentum for each jet constituent you feed it. This acts like the identity matrix in
which it passes all the constituents on. The third output contains linear combinations of the constituents. It
produces W sets of trainable linear combinations, the default number for W is 15. The idea is that it can act
like a groomer in which constituents can be down weighted, or groomed away by assigning a low sub weight
to it. The output then is M = 1+ N + W, columns. A depiction for which the 2 hardest jet constituents is
given in Figure 11. Note that there are in principle W sets of weights possible, only one set is depicted in this
figure.
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cos(θ*)   
DNN

Proof-of-principle, simple DNN 80% WL  signal efficiency at ~40% WT  mistag rate 
• Can we do better? Using more advanced architectures for WT vs WL, like GNNs, 

 under study (H. Kirschenmann et. al.) 

Single-object tag might not reach desired sensitivity, need to include full event 
information 

• Di-fat jet correlations, forward jet correlations etc. (e.g Grossi. et al., Channon et. al ) 

Systematic uncertainties and data corrections will be extremely difficult! 
• Calibration objects? Standard candles? Energy-dependence? 
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https://indico.cern.ch/event/864506/contributions/3682434/attachments/1990935/3319272/Grossi_Novak_VBS_reconstruction.pdf
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MWW	

Ultimately want to extract components of polarisation density matrix  
• Differential measurement of polarization fraction vs. E 
• Simultaneous fit to extract amplitudes 
• Look for deviations from SM in tail 

For all-hadronic, need “polarization un-biased” tagger 
(which current substructure algorithms are not) 

• Design GNN as generic W tag (polarization unbiased)? 

Need extremely high accuracy and good control over systematics, 
(energy dependence) 
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Figure A.1: Display of a VBF jet and a high pT photon in 9 layers of CE-E. The energy of individual reconstructed hits are colour coded on
a logarithmic scale. Text in Section 1.2 describes details of what can be seen.
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Left: Quark-jet tagging efficiency as a function of gluon-jet rejection, for each individual input variable 
in the medium pT range. The performance is evaluated using Pythia QCD di-jet Monte-Carlo simulation. 
Right: correlation coefficient among input variables for quark(top) and gluon(bottom) initiated jets.


