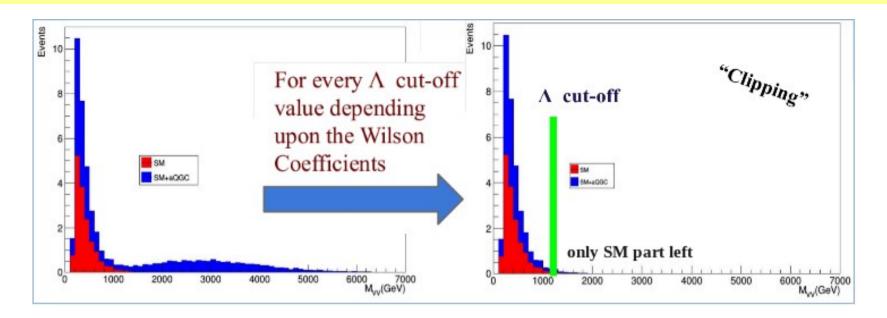
SM EFT effects in Vector Boson Scattering at the LHC

(with focus on the same-sign WW process)


* Recent experimental progress in setting limits on dim-8 operators (work done within the CMS Collaboration)

* Considerations about dim-6 operators in same-sign WW (based on arXiv:2011.07367 by A. Dedes and P. Kozów (+MS))

Michał Szleper National Center for Nuclear Studies, Warsaw

Winter 2021 topical meeting on VBS: VBS at Snowmass, January 28, 2021

Latest news on setting limits on dim-8 SMEFT operators – CMS, full Run 2 data

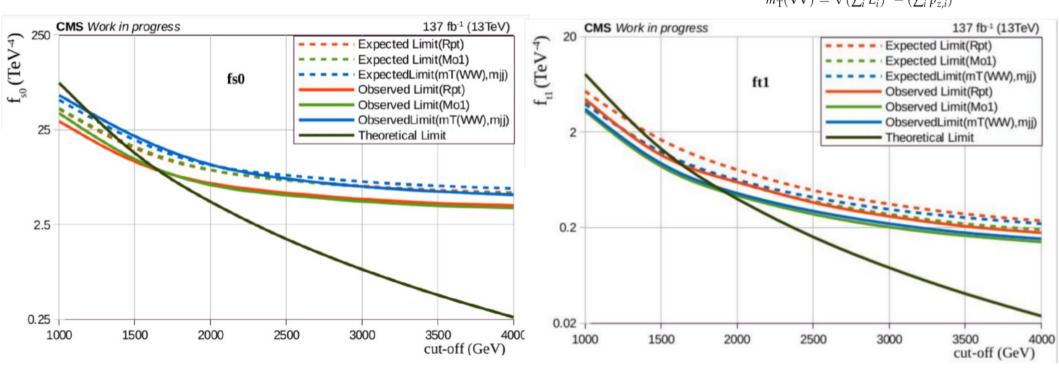
Without "clipping"

With "clipping"

	Observed ($W^{\pm}W^{\pm}$)	Expected ($W^{\pm}W^{\pm}$)		Observed ($W^{\pm}W^{\pm}$)	Expected ($W^{\pm}W^{\pm}$)
6 114	(TeV^{-4})	(TeV^{-4})	6 (14	(TeV ⁻⁴)	(TeV ⁻⁴)
$f_{\rm T0}/\Lambda^4$	[-0.28, 0.31]	[-0.36, 0.39]	$f_{\rm T0}/\Lambda^4$	[-1.5, 2.3]	[-2.1, 2.7]
$f_{\rm T1}/\Lambda^4$	[-0.12, 0.15]	[-0.16, 0.19]	$f_{\rm T1}/\Lambda^4$	[-0.81, 1.2]	[-0.98, 1.4]
$f_{\rm T2}/\Lambda^4$	[-0.38, 0.50]	[-0.50, 0.63]	$f_{\rm T2}/\Lambda^4$	[-2.1, 4.4]	[-2.7, 5.3]
$f_{\rm M0}/\Lambda^4$	[-3.0, 3.2]	[-3.7, 3.8]	$f_{\rm M0}/\Lambda^4$	[-13, 16]	[-19, 18]
$f_{\rm M1}/\Lambda^4$	[-4.7, 4.7]	[-5.4, 5.8]	$f_{\rm M1}/\Lambda^4$	[-20, 19]	[-22, 25]
$f_{\rm M6}/\Lambda^4$	[-6.0, 6.5]	[-7.5, 7.6]	$f_{\rm M6}/\Lambda^4$	[-27, 32]	[-37, 37]
$f_{\rm M7}/\Lambda^4$	[-6.7, 7.0]	[-8.3, 8.1]	$f_{\rm M7}/\Lambda^4$	[-22, 24]	[-27, 25]
$f_{\rm S0}/\Lambda^4$	[-6.0, 6.4]	[-6.0, 6.2]	$f_{\rm S0}/\Lambda^4$	[-35, 36]	[-31, 31]
$f_{\rm S1}/\Lambda^4$	[-18, 19]	[-18, 19]	$f_{\rm S1}/\Lambda^4$	[-100, 120]	[-100, 110]

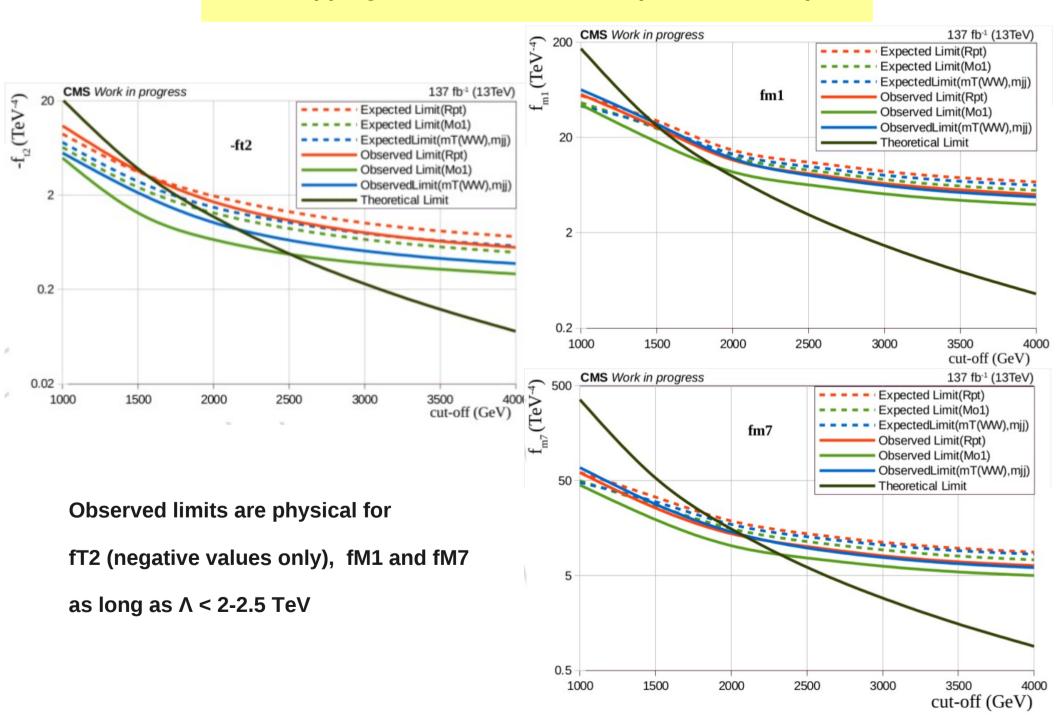
Limits weaker by a factor ~4-5 by only considering unitarity, similar for WZ (CMS Collaboration, *arXiv:2005.01173*)

New developments: "full clipping" under implementation (work in progress)

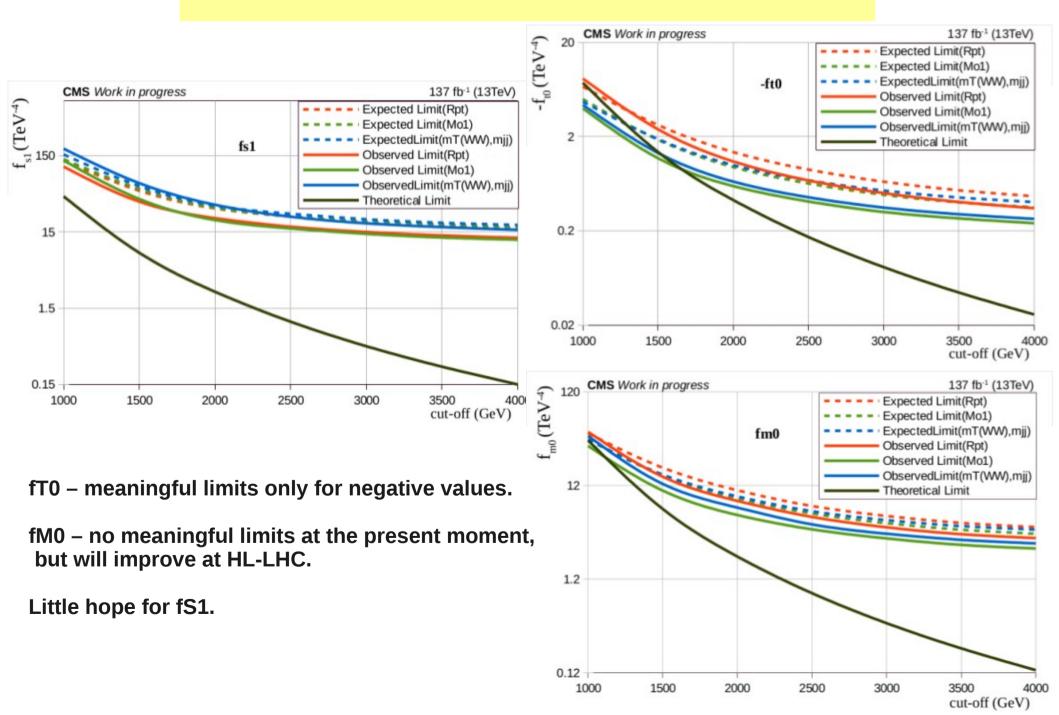

• Limits on f as a function of Λ .

Two examples:

- Obtained limit can be compared to theoretical limit (unitarity condition).
- Observed limit is physically meaningful if stronger than theoretical limit.
 - + study of new variables to improve sensitivity to BSM effects.

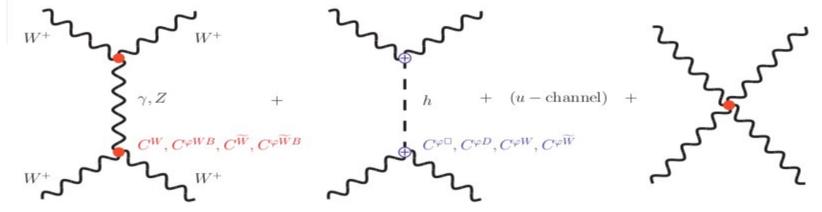

$$R_{pt} = (p_T^{l1} * p_T^{l2}) / (p_T^{j1} * p_T^{j2})$$

$$M_{o1} \equiv \sqrt{(|\vec{p}_T^{l1}| + |\vec{p}_T^{l2}| + |\vec{p}_T^{miss}|)^2 - (\vec{p}_T^{l1} + \vec{p}_T^{l2} + \vec{p}_T^{miss})^2}$$
$$m_T(VV) = \sqrt{(\sum E_1)^2 - (\sum n_1)^2}$$



We can already place some meaningful limits on fS0 and fT1 if Λ is less than 1.7-1.8 TeV

"Full clipping" first results – some optimistic examples



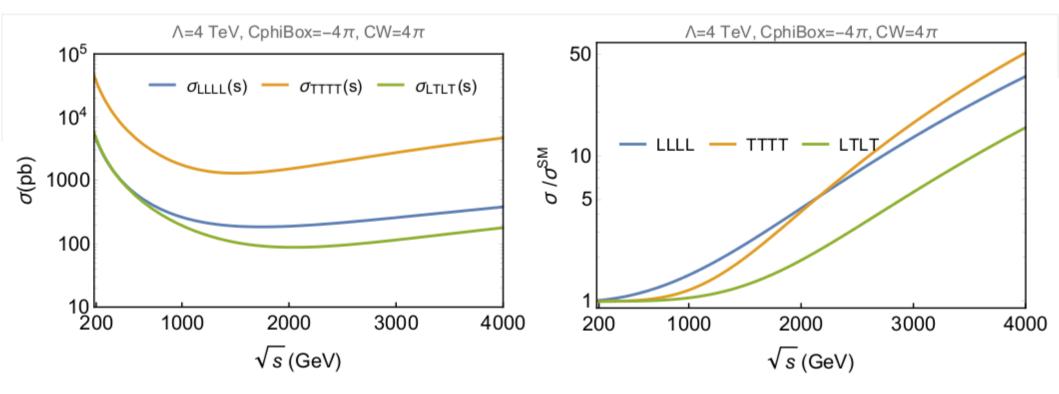
"Full clipping" results – some not so optimistic examples

Dim-6 SMEFT operators in same-sign WW

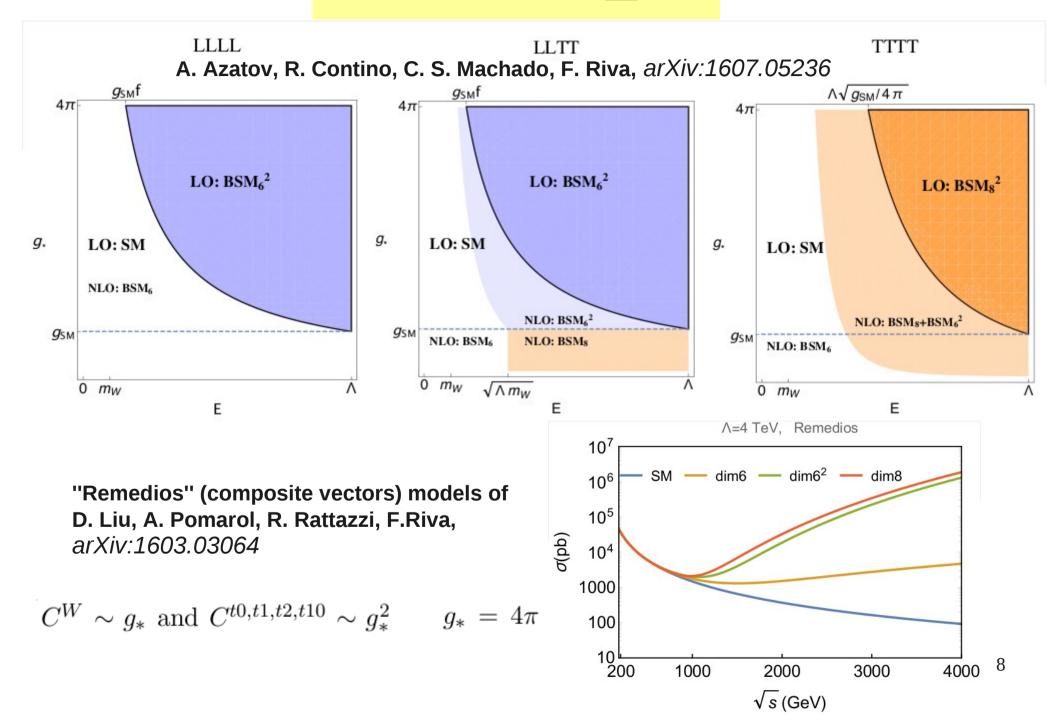
$Q_{\varphi D} = (\varphi^{\dagger} D^{\mu} \varphi)^* (\varphi^{\dagger} D_{\mu} \varphi) \qquad Q_{\varphi WB} = \varphi^{\dagger} \tau^I \varphi W_{\mu}$		$X^2 \varphi^2$	$arphi^4 D^2$	X^3	
	·μν Ι	$Q_{\varphi W} = \varphi^{\dagger} \varphi W^{I}_{\mu\nu} W^{\mu\nu I}$	$Q_{\varphi\Box} = (\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_W = \epsilon^{IJK} W^{\nu I}_{\mu} W^{\rho J}_{\nu} W^{\mu K}_{\rho}$	CPC
$CPV Q_{\widetilde{W}} = \epsilon^{IJK} \widetilde{W}^{\nu I}_{\mu} W^{\rho J}_{\nu} W^{\mu K}_{\rho} \qquad \qquad$	$B^{\mu u}$	$Q_{\varphi WB} = \varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	$Q_{\varphi D} = (\varphi^{\dagger} D^{\mu} \varphi)^* (\varphi^{\dagger} D_{\mu} \varphi)$		
$\psi $	μν Ι	$Q_{\varphi \widetilde{W}} = \varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu \nu} W^{\mu \nu I}$		$Q_{\widetilde{W}} = \epsilon^{IJK} \widetilde{W}^{\nu I}_{\mu} W^{\rho J}_{\nu} W^{\mu K}_{\rho}$	CPV
$Q_{\varphi \widetilde{W} B} = \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu z}$	$W^{\mu\nu I}$	$\begin{aligned} Q_{\varphi \widetilde{W}} &= \varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu \nu} W^{\mu \nu I} \\ Q_{\varphi \widetilde{W} B} &= \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu \nu} W^{\mu i} \end{aligned}$			

Decompose W+W+ \rightarrow W+W+ process into helicity amplitudes and derive analytic expressions for cross sections in the presence of dim-6 operators (on-shell approximation)

 $\sigma_{TTTT}: \sigma_{LLLL}: \sigma_{LTLT}: \sigma_{TLTL}: \sigma_{TLTL}: \sigma_{LTTL} \approx 1: \frac{1}{8.5}: \frac{1}{8.0}: \frac{1}{8.0}:$


The effect of dim-6 operators on the W+W+ \rightarrow W+W+ process

Analytic expressions at leading order in s from *arXiv:2011.07367*:


$$\sigma_{TTTT}(s) \approx \frac{\bar{g}^4}{s} \left[\frac{A_T}{1 - c^2} + B_T \cdot 0 + \Gamma_T \bar{g}^2 \left(\frac{|C^W|}{\bar{g}^2} \right)^2 \left(\frac{s}{\Lambda^2} \right)^2 + \cdots \right],$$

$$\sigma_{LLLL}(s) \approx \frac{\bar{g}^4}{s} \left[\frac{A_L}{1 - c^2} + B_L \left(\frac{C^{\varphi \Box}}{\bar{g}^2} \right) \left(\frac{s}{\Lambda^2} \right) + \Gamma_L \left(\frac{C^{\varphi \Box}}{\bar{g}^2} \right)^2 \left(\frac{s}{\Lambda^2} \right)^2 + \cdots \right]$$

 $Q_{\varphi WB}$ disappears,

 Q_W and $Q_{arphi \square}$ most promising

Dim-6 vs dim-8 in W+W+ \rightarrow **W+W+**

Warsaw basis - all dim-6 operators potentially relevant to VBS at the LHC from B. Grządkowski, M. Iskrzyński, M. Misiak, J.Rosiek (arXiv:1008.4884)

Ī	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
	Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
	$Q_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
	Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{Kp}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
	$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
		$X^2 \varphi^2$	$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
	$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
	$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
	$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{e}_{p}\gamma^{\mu}e_{r})$
	$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
	$Q_{\varphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
	$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
	$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
	$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Table 2: Dimension-six operators other than the four-fermion ones.

<u>Warsaw basis - all dim-6 operators potentially relevant to VBS at the LHC</u> - omit CP-violating operators

Ī	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Ĩ	Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
			$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
<	Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
		$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
	$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$
			Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
<	$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{e}_{p} \gamma^{\mu} e_{r})$
			Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
	$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
			Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
4	$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
			Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Table 2: Dimension-six operators other than the four-fermion ones.

Warsaw basis - all dim-6 operators potentially relevant to VBS at the LHC - omit leptonic operators

ĺ	X^3			φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$	
	Q_G Q_W	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$ $\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$egin{array}{c} Q_{arphi} \ Q_{arphi^{\Box}} \ Q_{arphi^{D}} \ Q_{arphi^{D}} \end{array}$	$ \frac{(\varphi^{\dagger}\varphi)^{3}}{(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)} \\ \left(\varphi^{\dagger}D^{\mu}\varphi\right)^{*}\left(\varphi^{\dagger}D_{\mu}\varphi\right) $	$Q_{u\varphi}$ $Q_{d\varphi}$	$\begin{aligned} (\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi) \end{aligned}$
ĺ		$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
	$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$				
<	$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$O^{(1)}$	(atititic and a state and a s
	$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uW} Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu} (\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(1)}_{\varphi q}$ $Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$ \leftrightarrow
	$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dG} Q_{dW} Q_{dB}	$\begin{aligned} &(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu} \\ &(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu} \\ &(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu} \end{aligned}$	$egin{array}{c} Q_{arphi u} \ Q_{arphi d} \ Q_{arphi d} \ Q_{arphi u d} \ \end{array}$	$\begin{aligned} (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi) (\bar{u}_{p} \gamma^{\mu} u_{r}) \\ (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi) (\bar{d}_{p} \gamma^{\mu} d_{r}) \\ i (\widetilde{\varphi}^{\dagger} D_{\mu} \varphi) (\bar{u}_{p} \gamma^{\mu} d_{r}) \end{aligned}$

Table 2: Dimension-six operators other than the four-fermion ones.

<u>Warsaw basis - all dim-6 operators potentially relevant to VBS at the LHC</u> - omit operators that do not affect the W+W+ process at LO

Ī	X^3	φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$
<	$Q_G \qquad f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$ $Q_W \qquad \varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi\Box} \qquad (\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$ $Q_{\varphi D} \qquad (\varphi^{\dagger}D^{\mu}\varphi)^{\star}(\varphi^{\dagger}D_{\mu}\varphi)$	$\begin{array}{c} Q_{u\varphi} & (\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi}) \\ Q_{d\varphi} & (\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi) \end{array}$
Ĭ	$X^2 \varphi^2$	$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$
	$Q_{\varphi G} \qquad \varphi^{\dagger} \varphi G^A_{\mu\nu} G^{A\mu\nu}$		
	$Q_{\varphi W} \qquad \varphi^{\dagger} \varphi W^{I}_{\mu\nu} W^{I\mu\nu}$	$\begin{array}{c c} Q_{uG} & (\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu} \\ Q_{uW} & (\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu} \\ Q_{uB} & (\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu} \end{array}$	$ \begin{array}{c c} Q_{\varphi q}^{(1)} & (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi)(\bar{q}_{p} \gamma^{\mu} q_{r}) \\ Q_{\varphi q}^{(3)} & (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \end{array} $
		$ \begin{array}{ c c c c c } Q_{dG} & (\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu} \\ Q_{dW} & (\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu} \\ Q_{dB} & (\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu} \end{array} $	$\begin{array}{ c c c c c } Q_{\varphi u} & (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{u}_{p} \gamma^{\mu} u_{r}) \\ Q_{\varphi d} & (\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{d}_{p} \gamma^{\mu} d_{r}) \\ Q_{\varphi u d} & i(\widetilde{\varphi}^{\dagger} D_{\mu} \varphi)(\bar{u}_{p} \gamma^{\mu} d_{r}) \end{array}$

Table 2: Dimension-six operators other than the four-fermion ones.

Warsaw basis - all dim-6 operators potentially relevant to VBS at the LHC omit gluonic operators that are well constrained by other processes (see arXiv:1611.00767 and arXiv:1911.07866)

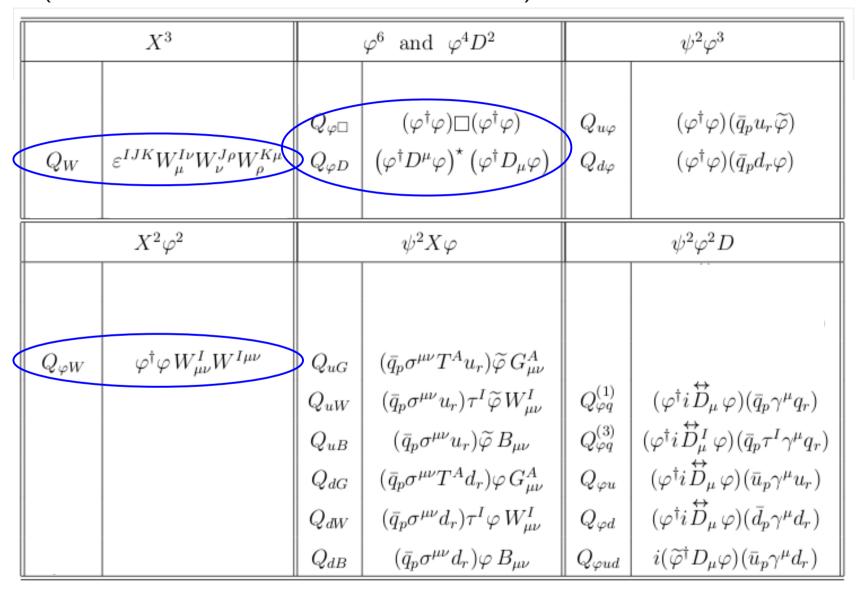


Table 2: Dimension-six operators other than the four-fermion ones.

<u>Warsaw basis - all dim-6 operators potentially relevant to VBS at the LHC</u> Part 2: 4-fermion operators - omitting B-violating operators

	$(\bar{L}L)(\bar{L}L)$	$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$				
Q_{ll}	$(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$			
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$			
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$			
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$			
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	<i>B</i> -violating						
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$							
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$							
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$							
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$							
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$							

Table 3: Four-fermion operators.

<u>Warsaw basis - all dim-6 operators potentially relevant to VBS at the LHC</u> Part 2: 4-fermion operators - omit leptonic operators

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
$Q_{qq}^{(1)} Q_{qq}^{(3)} Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$ $(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{uu} Q_{dd}	$\begin{aligned} &(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ &(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \end{aligned}$		
		$Q_{ud}^{(1)}$ $Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$ $(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	Q_{qe} $Q_{qu}^{(1)}$ $Q_{qu}^{(8)}$ $Q_{qd}^{(1)}$ $Q_{qd}^{(8)}$ $Q_{qd}^{(8)}$	$\begin{aligned} &(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)\\ &(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{d}_s\gamma^\mu d_t)\\ &(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t)\end{aligned}$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	ating	
$Q_{quqd}^{(1)}$ $Q_{quqd}^{(8)}$	$\begin{split} &(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})\\ &(\bar{q}_{p}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t}) \end{split}$				

Table 3:	Four-fermion	operators.
----------	--------------	------------

Simulation work: potential impact of dim-6 operators on W+W+

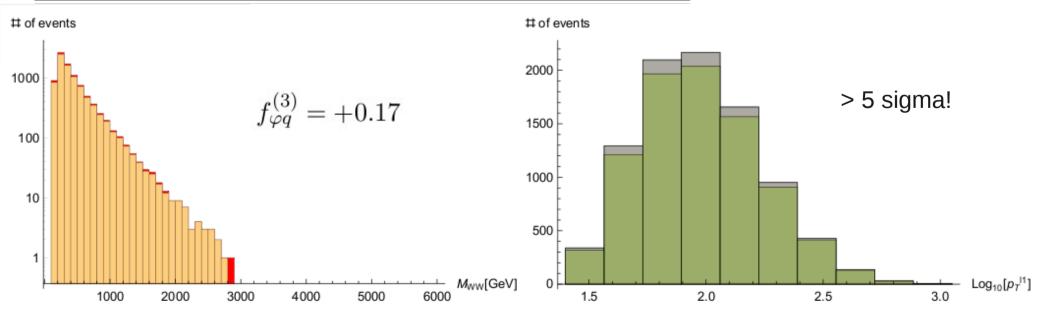
- MG5 (all relevant UFOs produced) + Pythia 8 + FastJet Study of BSM effects in kinematic distributions, for each operator the most sensitive variable chosen
- Current experimental limits on dim-6 operators:

Non-4-fermion:

[28] S. Dawson, S. Homiller, S. D. Lane, *arXiv:2007.01296*. \leftarrow include LHC Run 2 data. [29] J. Ellis, C. W. Murphy, V. Sanz, T. You, *arXiv:1803.03252* dim-6 only (no $(\dim-6)^2$ terms) **4-fermion:** [30] O. Domenech, A. Pomarol, J. Serra, *arXiv:1201.6510*, [31] CMS Collaboration, arXiv:1703.09986

 \leftarrow early LHC dijet data (enough)

• Operators for which experimental limits are not available:

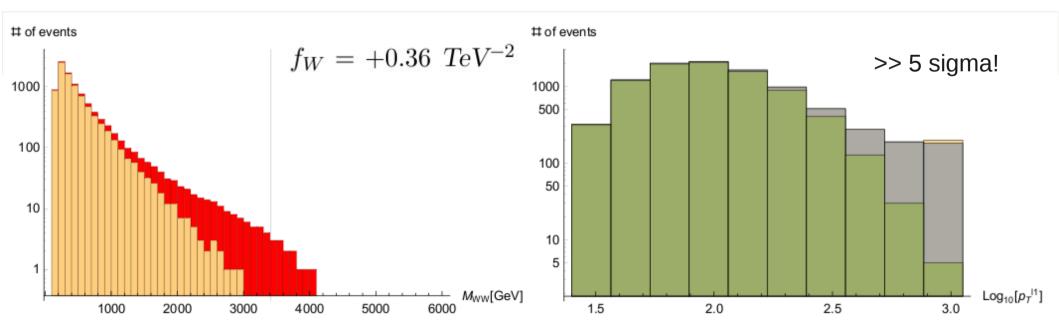

Q_quqd(1), **Q_quqd(8)** – no sensitivity up to the strong coupling limit, Q_uW, Q_uB, Q_dG, Q_dW, Q_dB ("dipole operators") – claimed to be strongly constrained in [29] and A. Falkowski http://cds.cern.ch/record/2001958?ln=pl, in addition no sensitivity to **Q_uB** and **Q_dB**, while **Q_uW**, **Q_dG** and **Q_dW** affect mostly jet distributions,

- **Q_phiud** affects mainly jet pT,
- **Q_qq(3)** is identical to **Q_qq(1)** assuming flavor-diagonal Wilson coefficients.

$\psi^2 \varphi^3$ [29]	σ	$\psi^2 X \varphi$ [29]	σ
$\int f_{u\varphi} [-120., -36.] \times y_u$	0.027	$f_{uG} [+5, +\overline{18.}] \times y_u$	$5.5 imes 10^{-3}$
$f_{d\varphi} [+3.,+7.9] \times y_d$	0.		
$\psi^2 \varphi^2 D$ [28]	σ	$(\bar{L}L)(\bar{L}L)$ [30, 31]	σ
$f_{\varphi q}^{(1)} \qquad [-0.23, +0.12]$	0.46	$f_{qq}^{(1)} [-0.028, +0.057]$	1.1
$f_{\varphi q}^{(3)} \qquad [-0.18, +0.17]$	5.7		
$f_{\varphi u}$ [-0.79, +0.54]	0.		
$f_{\varphi d}$ [-0.81, +0.13]	0.		
$(\bar{R}R)(\bar{R}R)$ [30]	σ	$(\bar{L}L)(\bar{R}R)$ [30]	σ
f_{uu} [-0.1, +0.23]	0.	$f_{qu}^{(1)}$ [-0.35, +0.35]	0.
f_{dd} [-0.31, +0.44]	0.	$f_{qu}^{(8)}$ [-0.5, +1.]	0.
$\int_{ud}^{(1)} [-0.44, +0.44]$	0.	$f_{qd}^{(1)}$ [-0.59, +0.59]	0.
$f_{ud}^{(8)} = [-0.59, +1.56]$	0.	$\hat{f_{qd}^{(8)}}$ [-1.,+1.56]	0.

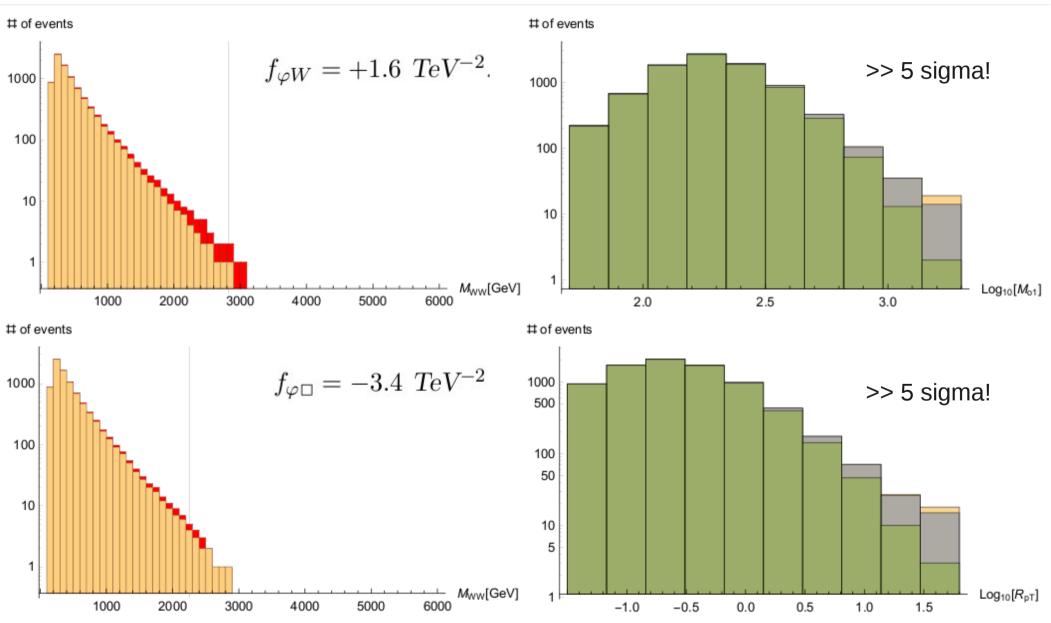
<u>Summary of</u> <u>"background" (non-VBS)</u> <u>operators</u>

Significant effects possible from Q_phiq(3) with current bounds, but kinematics distinctly different from VBS operators.


Potential impact of VBS dim-6 operators on W+W+

Current bounds taken from [28]:

	f_W	$f_{\varphi \Box}$	$f_{\varphi D}$	$f_{arphi W}$
"individual"	[-0.15, +0.36]	[-0.44, +0.52]	[-0.025, +0.0015]	[-0.014, +0.0068]
"global"	[-1.3,+1.1]	[-3.4, +2.4]	[-2.7, +1.2]	[-0.14, +1.6]


Correlation matrix from [29]: negligible to mild correlation between operators of interest

Q_W: significant effects possible at the HL-LHC even with "individual" bounds

Potential impact of VBS dim-6 operators on W+W+

Q_phiW and Q_phiBox: significant effects possible at the HL-LHC if current "global" bounds are considered

Summary and conclusions

- 1. "Full clipping" method to set limits on SMEFT dim-8 operators is under implementation in the analysis of Run 2 data.
- 2. For most dim-8 operators the limits are already physical, i.e., stronger than the limits coming from pure theory (unitarity conditions), but only for relatively low values of the cutoff parameter Λ typically below 2 TeV.
- 3. The potential impact of all dimension-6 operators in the same-sign scattering process have been studied, taking into account the current experimental limits from other processes.
- 4. The answer to the question whether we can safely ignore dim-6 operators in VBS analyses at this point seems to be no. Particularly large effects are possible from Q_W.

Coefficient	Individual Limit (95% C.L.)	Marginalized Limit (95% C.L.)
C _{HWB}	[-0.005, 0.0025]	[-0.61, 1.25]
C_{HD}	[-0.0253, 0.0015]	[-2.7, 1.24]
$C_{H\square}$	[-0.4390, 0.5150]	[-3.41, 2.44]
C_H	[-19.7, 6.2]	[-23.4, 20.2]
Cu	[-0.0039, 0.0207]	[-0.0842, 0.0351]
$C_{Hq}^{(1)}$	[-0.029, 0.042]	[-0.228, 0.116]
$C_{Hq}^{(3)}$	[-0.099, 0.0146]	[-0.183, 0.167]
$C_{Hl}^{(1)}$	[-0.0043, 0.0120]	[-0.296, 0.689]
$C_{Hl}^{(3)}$	[-0.0119, 0.0029]	[-0.142, 0.220]
C_{Hu}	[-0.076, 0.087]	[-0.791, 0.535]
C_{Hd}	[-0.165, 0.0540]	[-0.806, 0.132]
C_{He}	[-0.0126, 0.0094]	[-0.620, 1.350]
C_W	[-0.15, 0.36]	[-1.28, 1.11]
C_{HG}	[-0.0027, 0.0032]	[-0.0164, 0.0083]
C_{HW}	[-0.0143, 0.0068]	[-0.141, 1.63]
C_{HB}	[-0.0043, 0.0020]	[-0.4490, 0.731]
$C_{\tau H}$	[-0.0154, 0.0269]	[-0.0297, 0.0382]
C_{bH}	[-0.131, 0.0723]	[-0.134, 0.132]
C_{tH}	[-1.0900, 0.625]	[-7.35, 3.64]