VBS @ Future Hadron Colliders (HE-LHC, FCC-hh)

1

Patrizia Azzi - INFN Padova

Pushing the energy frontier

- A very large circular hadron collider seems the only approach to reach 100 TeV c.m. collision energy in coming decades
- It allows access to direct production of new particles in the few TeV to 30 TeV mass range, far beyond LHC reach.
- Much-increased rates for phenomena in the sub-TeV mass range. This means an increased precision w.r.t. LHC and possibly ILC (on some statistically limited processes)
- The name of the game of a hadron collider is energy reach

$$E \propto B_{dipole} \times \rho_{bending}$$

Comparing with the LHC: FCC-hh provides a factor \sim 4 in radius, factor \sim 2 in field, factor O(10) in E_{cms}

FCC Project Study

- International FCC collaboration (CERN as host lab) to study:
- pp-collider (FCC-hh): current main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km tunnel infrastructure in Geneva area
- e+e- collider (FCC-ee) as first step
- p-e (FCC-he) option
- Considering also the option of a HE-LHC with FCC-hh technology

CEPC-SPPC study (similar parameters, aggressive timeline)

Accelerator parameters comparison

	LHC / HL-LHC	HE-LHC (tentative)	FCC Initial	C-hh Ultimate
Cms energy [TeV]	14	27	100	100
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1/5	28	5	20-30
Machine circumference	27	27	97.75	97.75
Arc dipole field [T]	8	16	16	16
Bunch charge	1.15 / 2.2	2.2	1	1
Bunch distance [ns]	25	25	25	25
Background events/bx	27 / 135	800	170	<1020
Bunch length [cm]	7.5	7.5	8	8

FCC-hh reference Detector Cavern

FCC-hh Reference Detector

- 4T, 10m solenoid, unshielded
- Forward solenoids, unshielded
- Silicon tracker
- Barrel ECAL LAr
- Barrel HCAL Fe/Sci
- Endcap HCAL/ECAL LAr
- Forward HCAL/ECAL LAr

50m length, 20m diameter similar to size of ATLAS

Comparison to ATLAS & CMS

- Average distance between vertices at z=0:
 - 1mm for HL-LHC (140 pileup)
 - 125um for FCC-hh (1000 pileup)
- As for HL-LHC, timing can help for vertex identification
- Effective pileup: Number of vertices that a track of a given pT is compatible with at 95% CL.
 - For a time resolution of 25ps, CMS can get to an effective pileup of 1 for 1 GeV/c tracks at η = 4.
 - For an FCC detector the time resolution has to be at a level of 5ps to get to similar numbers.
- The impact of pileup on a given physics analysis depends very much on the specific channels.

Remarks

- Higher statistics shifts the balance between systematic and statistical uncertainties.
 - It can be exploited to define different signal regions, with better S/B, better systematics, pushing the potential for better measurements beyond the « systematics wall » of Low-stat measurements.
- We often talk about « precise » Higgs measurements.
 - What we actually aim at is « sensitive » tests of the Higgs propertie, where sensitive refers to the ability to reveal a BSM behaviour
- Sensitivity may not require extreme precision. Going after « sensitivity » rather than just precision opens itself new opportunities...
 - For example, in the context of dim. 6 operators in EFT, some operators grow with energy:

BR measurement: $\delta O \sim \left(\frac{v}{\Lambda}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{\Lambda}\right)^2 \implies \text{precision probes large } \Lambda$ e.g. $\delta O = 1\% \Rightarrow \Lambda \sim 2.5 \text{ TeV}$

$$\sigma(\mathbf{p}_{\mathsf{T}} > \mathsf{X}): \quad \delta O \sim \left(\frac{Q}{\Lambda}\right)^2$$

 $\Rightarrow \textbf{kinematic reach} \text{ probes large } \Lambda$

e.g. $\delta 0{=}\,15\%$ at Q=1 TeV $\Rightarrow \Lambda{\sim}2.5\,\text{TeV}$

2021 20 Patrizia Azzi - VBSScan Jan

Why proposing HE-LHC?

28 2021 Patrizia Azzi - VBSScan Jan

HE-LHC design goals and basic choices

physics goals:

- 2x LHC collision energy with FCC-hh magnet technology
- c.m. energy = 27 TeV ~ 14 TeV x 16 T/8.33T
- target luminosity \geq 4 x HL-LHC (cross section $\propto 1/E^2$)

key technologies:

- FCC-hh magnets (curved!) & FCC-hh vacuum system
- HL-LHC crab cavities & electron lenses

beam:

• HL-LHC/LIU parameters (25 ns baseline, also 5 ns option)

The scale of FCC-hh - Cross sections for SM particles

Di-jet production at large mass

- 50pb⁻¹ to 2x the sensitivity of HL-LHC \Rightarrow < 1 month @ 10³²
- Ifb⁻¹ to 3x the sensitivity of HL-LHC \Rightarrow < 1 year @ 2x10³²

14

18

W and Z production at FCC-hh

- Production of W and Z bosons is an extremely important probe of EW and QCD dynamics
- The production rate of W[±](ZO) bosons at 100 TeV is about 1.3(0.4)µb. This corresponds to O(10¹¹) leptonic decays per ab⁻¹.

High pt dilepton comparison with HE-LHC

Fig. 3.3 Integrated lepton transverse (dilepton) mass distribution in pp $\rightarrow W^* \rightarrow \ell \nu$ (pp $\rightarrow Z^*/\gamma^* \rightarrow \ell^+\ell^-$), at 100 and 27 TeV. One lepton family is included, with $|\eta_\ell| < 2.5$

Course 2020 - Future Colliders PhD Datrizia Azzi

Production of gauge boson by « radiation »

New phenomenon!

- Most likely mechanism to produce gauge boson in final states with multi-TeV jets is NOT LO QCD process of V recoiling
 - against the jet: $qg \rightarrow qV$ It is a higher order process
- where another jet recoiling radiates off a V $qq \rightarrow qqV$
- Emission probability can be enhanced by 10%!

'ig. 37: Emission probability for additional W bosons in dijet events at large p_T .

Gauge Boson pair production

- Pair production is the most direct and sensitive probe of triple gaugebosons interactions (TGCs).
- TGCs strongly constrained by LEP measurements
- Anomalous TGCs violate gauge invariance and its delicate cancellations and give rise to deviation that grow with quadratically with the bosons energy.
- High mass boson pair provide strong constraints on BSM:

Rate at high mass larger than DY: Comparable reach? Use of hadronic decays with boosted topologies

VBS and VBF production of EWK bosons

- VBF and VBS processes is a key measruement to probe the mechanism of EWK symmetry breaking and test effect of BSM models
 - The V_LV_L->V_LV_L scattering is unitarized by the interference with the H exchange

2

VBS and VBF production of EWK bosons

- At hadron collider this happens with (anti)quarks scattering with the exchange of a weak gauge boson in t-channel and then emission of 2 gauge bosons: $pp \rightarrow VVjj$
 - The 2 jets are typically in the forward region
 - Little QCD activity in the central region
 - useful to reduce the big QCD background

VBS @100TeV - Leptonic final state study

- Analysis for leptonic final states of WW, WZ and ZZ
- Study considers EFT Dim-8 operators only affect Quartic Gauge Boson coupling and arise only in VBS processes
- Takes care of unitarity constraint as well

Figure 2: Invariant mass (l.h.s.) and rapidity separation of the two tagging jets (r.h.s) for the EW-induced (red lines) and QCD-induced (blue lines) contributions to $pp \rightarrow \nu_e e^+ \nu_\mu \mu^+ jj$, without any selection cuts.

VBS@100TeV - WWjj Effect of dim-8 operators + unitarity

Figure 7: Transverse-mass distribution of the gauge-boson system for the process $pp \rightarrow \nu_e e^+ \nu_\mu \mu^+ jj$ in the framework of the SM (red lines) and including the impact of the dimension-eight operator $\mathcal{O}_{T,0}$ without (black lines) and with (green lines) the form factor of Eq. (23), in two different plot ranges. The selection cuts of Eqs. (11)–(14) and Eq. (24) are imposed.

VBS@100TeV - $pp \rightarrow ZZjj$

Sensitive to scalar resonances, background to VBF H production

Fig. 95: Invariant-mass distribution of the four-lepton system for two different ranges of the EW-induced (blue line) and QCD-induced (red line) contributions to $pp \rightarrow e^-e^+\mu^-\mu^+jj$, within the selection cuts of Eqs. (42)–(46) and Eq. (51). An integrated luminosity of 30 ab⁻¹ is assumed.

VBS $pp \rightarrow ZZjj$ - Effect of Dim-8 operators

Figure 12: Invariant-mass distribution of the ZZ system reconstructed from the lepton momenta in two different plot ranges for the process $pp \rightarrow e^-e^+\mu^-\mu^+jj$ in the framework of the SM (red and blue lines) and including the impact of the dimension-eight operator $\mathcal{O}_{T,0}$ (green line) with the form factor of Eq. (23). The selection cuts of Eqs. (11)-(15) and Eq. (29) are imposed.

W_LW_L scattering (relevant for VVH coupling) & detector req.

Table 4.5 Constraints on the HWW coupling modify Table 4.5: Constraints on the HWW coupling modifier κ_W at 68% CL, obtained for various cuts on the ss in the $W_L W_L \rightarrow HH$ process.

		m_{l+l} cut $> 50 \text{ GeV}$	> 200 GeV $> 500 GeV$ $> 1000 GeV$	
m_{l+l+} cut	> 50 GeV	$\kappa_W \in [0.98, 1.05]$	[0.99,1.04] [0.99,1.03] [0.98,1.02])00 GeV
$\kappa_W \in$	[0.98, 1.05]	[0.99, 1.04]	[0.99, 1.03]	[0.98, 1.02]

25

Studies for the HE-LHC

• Studies performed for the YR of the HL/HE-LHC, 1902.04070

process	$\sqrt{S}=$ 14 TeV	$\sqrt{S}=$ 27 TeV
W ⁺ W ⁺ jj	2.33 fb	8.65 fb
<i>W</i> ⁺ <i>W</i> ⁺ <i>jj</i> (∆ <i>y_{jj}</i> >2.4)	2.49 fb	9.11 fb
W ⁺ Zjj	0.82 fb	3.16 fb
ZZjj	0.11 fb	0.44 fb

FULLY LEPTONIC FINAL STATE Simple scaling for HE-LHC from the HL-LHC results

Table 15: Expected significance and measurement uncertainty for the VBS $Z_L Z_L$ fraction at HL-LHC and HE-LHC with and without systematic uncertainties included.

	significance		precision (%)		
	w/ syst. uncert.	w/o syst. uncert.	w/ syst. uncert.	w/o syst. uncert.)	
HL-LHC	1.4σ	1.4σ	75%	75%	
HE-LHC	5.2σ	5.7σ	20%	19%	

Semileptonic VBS at HE-LHC

Study with Delphes for the HE-LHC focused on the effect of PU reduction

Fig. 32: Leading large-R jet mass (left) after applying the PUPPI algorithm at an integrated luminosity of 1 ab⁻¹ at $\sqrt{s} = 27$ TeV with five different pile-up overlay conditions of $\mu_{\text{pileup}} = 0$, 100, 200, 400 and 800. The right plots shows the same distribution but after additionally requiring that the jets are trimmed with the conditions described in the text.

VBS semileptonic @HE-LHC - Significance of EWK signal

Fig. 33: The expected cross section uncertainty as function of integrated luminosity at 27 TeV compared to the one obtained at 14 TeV (left). Right: Observed significance as a function of the luminosity and expected uncertainty for the EW $W_L W_L$ signal assuming a 10% fraction predicted by MADGRAPH (right). One line shows the results obtained by fitting a single variable, the total invariant mass of the system and the other one shows the expected significance using the BDT. The third line shows the expected significance assuming the combination of all three semi-leptonic channels with the same sensitivity.

Conclusions

- FCC-hh is a great place to study boson processes: the high √s increases the cross section for rare processes, and it also increases the object boost.
 - Large statistics and boosted object allow to trade efficiency for purity in difficult channels
- Analysis very simplistic for the moment, just to set the scale of the reach.
 - technical issues such as PileUp reduction need a much higher level of knowledge of simulation.
 - For now some studies informing the detector requirements
- Important note: much of these measurements rely on the measurement of the previous HL-LHC but also of the FCC-ee for the expected precision