
Vector Boson Scattering at Hadron Colliders

Ashutosh Kotwal Duke University

VBS @ Snowmass January 29, 2021

Old and New Questions

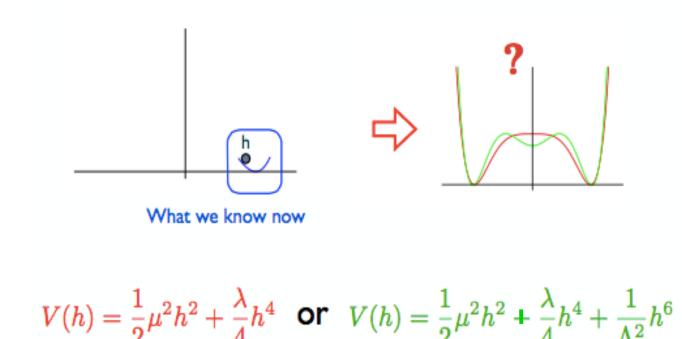
- How to think of the vacuum as an "electroweak condensed state" ?
- How are the mysteries associated with a single, fundamental scalar field solved?
- What is the origin and nature of Dark Matter?
- What is the origin of the Baryon Asymmetry in the Universe?
- Why is Dark Energy so small but non-zero?

Fundamental vs Parametric Physics

- Fundamental principles lead to
 - Chiral fermions from irreducible representations of Lorentz group
 - fermions as spin ½ representations of Lorentz group
 - Fermi-Dirac statistics \rightarrow Pauli Exclusion Principle
 - why matter occupies volume
 - Massless force mediators (gauge bosons) from gauge invariance
 - Massive gauge bosons and fermions from spontaneous breaking of gauge symmetry

- In comparison, the breaking of gauge symmetry by the Higgs VeV is parametrically induced
 - No dynamic or underlying principle behind it in the Standard Model

Why is Higgs Puzzling


Gauge sector $L = i \overline{\psi} \gamma^{\mu} D_{\mu} \psi - \frac{1}{2} F_{\mu\nu} I$	$F^{\mu u}$
---	-------------

particle	spin
quark: u, d,	1/2
lepton: e	1/2
photon	1
W,Z	1
gluon	1
Higgs	0

h: a new kind of elementary particle

Higgs sector $L = \left(h_{ij}\overline{\psi}_{i}\psi_{j}H + \text{h.c.}\right) - \lambda \left|H\right|^{4} + \mu^{2} \left|H\right|^{2} - \Lambda^{4}_{CC}$

Why is Higgs Puzzling

Ad-hoc potential, similar to and motivated by Landau-Ginzburg theory of superconductivity

Higgs potential in SM can be extrapolated to Planck scale without additional parameters; but no a-priori reason for a parameterization to respect this condition

Higgs boson puzzles

- First fundamental (?) scalar field to be discovered
- Spontaneous symmetry breaking by development of a VeV
 - But VeV is induced parametrically by ad-hoc Higgs potential, no dynamics
- Parameters of Higgs potential are not stable under radiative corrections
 - First time that the radiative correction to a particle mass is additive and quadratically divergent
 - Gauge boson masses are protected by gauge invariance
 - Fermion masses are protected by chiral symmetry of massless fermions
- Single scalar Higgs field is a strange beast, compared to fermions and gauge bosons
- Additional symmetries and/or dynamics strongly motivated by Higgs discovery

Why is the Higgs Boson So Light?

- Old idea: Higgs doublet (4 fields) is a Goldstone mode generated from the spontaneous breaking of a larger global symmetry
 - Higgs boson and W_L, Z_L are all Goldstone bosons from, eg.
 Spontaneously breaking global SO(5) → SO(4)
 - Small, loop effects cause some additional, explicit breaking of SO(5) symmetry, causing Higgs to be not exact (massless) Goldstone but Pseudo-Goldstone (light)
 - Examples: Holographic Higgs, Little Higgs models...
 - Electroweak vev "v" is small compared to SO(5) breaking scale "f"
- Vector boson scattering topology
 - Quarks emit longitudinal vector bosons which interact with new (presumably strong) dynamics
 - Quarks scatter by small angle in the forward direction

Motivation for Resonances in VBS

- Assumption is that there is a strong dynamics at the energy scale "f" which causes a condensate to form and break the SO(5) symmetry
- Resonances will be associated with this strong dynamics
- Lightest resonance will decay to the "pseudo-Goldstones" which are much lighter, ie longitudinal gauge bosons and Higgs bosons
 - Similar to QCD ρ –> $\pi\pi$
- Simplified model: arXiv:1109.1570 (Contino *et al.*) "On the effect of resonances in composite Higgs phenomenology"

– Scalar resonance: $\eta \rightarrow hh$, $V_L V_L$

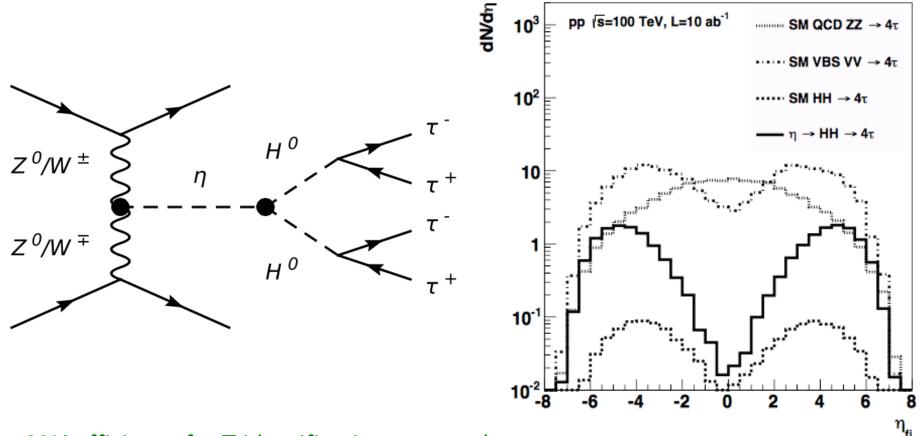
Motivation

• Lagrangian from Contino *et al.* for a scalar resonance η coupling to the Goldstones

$$\mathcal{L}^{(\eta)} = \frac{1}{2} \left(\partial_{\mu} \eta \right)^2 - \frac{1}{2} m_{\eta}^2 \eta^2 + \frac{f^2}{4} \left(2a_{\eta} \frac{\eta}{f} + b_{\eta} \frac{\eta^2}{f^2} \right) \operatorname{Tr} \left[d_{\mu} d^{\mu} \right]$$
• Width of the resonance:
$$(D_{\mu} \Phi)^T (D^{\mu} \Phi)$$

$$\Gamma_{\eta} = \frac{a_{\eta}^2 m_{\eta}^3}{8\pi f^2}$$

Unitary is fully preserved by setting a_{η} = 1, no need for ad-hoc unitarization


Eliminates the complications of unitarization for anomalous couplings and higher-dimensional operators

Two free parameters: mass and width of the resonance

Longitudinal Vector Boson Scattering

Double Higgs Boson Production in the 4^t Channel from Resonances in Longitudinal Vector Boson Scattering at a <u>100 TeV Collider</u>

AVK, S. Chekanov, M. Low **Phys.Rev. D91 (2015) 114018**

60% efficiency for **τ** identification assumed

(a)The pseudo-rapidity distributions of the forward jets.

Forward Jet Coverage for Longitudinal VBS

AVK, S. Chekanov, M. Low

 $V_L V_L {\rightarrow} \eta {\rightarrow} HH$

TABLE II. 5σ discovery mass reach for the $\eta \to HH \to 4\tau$ resonance, at a pp collider with $\sqrt{s} = 100$ TeV and $\mathcal{L} = 10 \text{ ab}^{-1}$, for various cuts values on minimum p_T of the forward jets. The fractional width of the η resonance is set to $\Gamma/M = 20\%$.

p_T^{\min} (GeV)	30	50	70	90	110
$m_\eta~({ m TeV})$	3.53	2.90	2.35	1.92	1.56

- Lower p_T threshold on forward tagging jets is preferred
 - Reject pileup jets with good tracking in forward direction
 - Resolve overlapping pileup jets with higher granularity / spatial resolution (*a la* CMS high-granularity endcap calorimeter for HL-LHC)

Vector Boson Scattering

Double Higgs Boson Production in the 4τChannel from Resonances in Longitudinal Vector Boson Scattering at a 100 TeV Collider

AVK, S. Chekanov, M. Low Phys.Rev. D91 (2015) 114018

TABLE III. 5σ discovery mass reach for the $\eta \to HH \to 4\tau$ resonance, at a pp collider with $\sqrt{s} = 100$ TeV and $\mathcal{L} = 10$ ab⁻¹, for various cuts values on the maximum rapidity (y) of the forward jets. The fractional width of the η resonance is set to $\Gamma/M = 20\%$.

y^{\max}	8	7	6	5	4
$m_\eta~({ m TeV})$	2.9	2.9	2.81	2.42	1.75

Want jet rapidity coverage up to 6

Vector Boson Scattering

10

Double Higgs Boson Production in the 4τChannel from Resonances in Longitudinal Vector Boson Scattering at a 100 TeV Collider

AVK, S. Chekanov, M. Low Phys.Rev. D91 (2015) 114018

SY = 1

Sensitivity grows rapidly with luminosity

Gains with collider energy not as impressive

FIG. 13. 5σ discovery mass reach for the $\eta \to HH \to 4\tau$ resonance, as a function of the integrated luminosity and \sqrt{s} of a pp collider. The fractional resonance width Γ_{η}/m_{η} is fixed at 20%.

Vector Boson Scattering

Double Higgs Boson Production in the 4τChannel from Resonances in Longitudinal Vector Boson Scattering at a 100 TeV Collider

AVK, S. Chekanov, M. Low Phys.Rev. D91 (2015) 114018

Sensitivity grows rapidly with luminosity

Gains with collider energy not as impressive

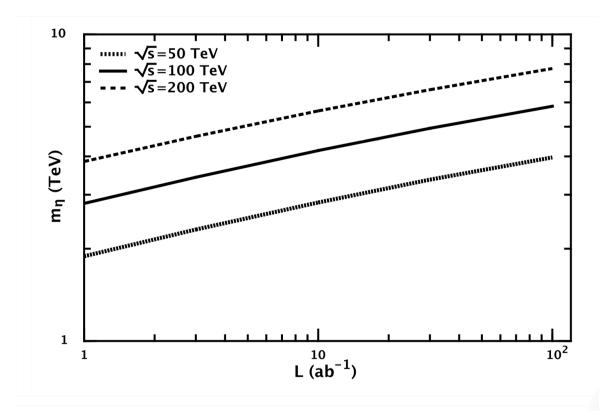
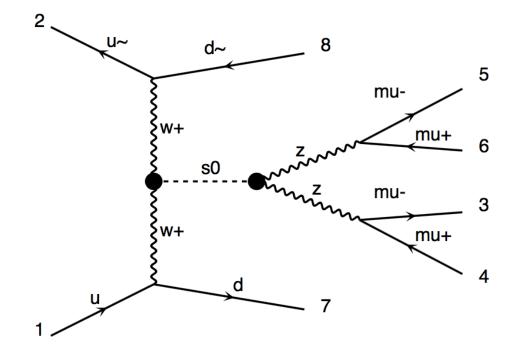
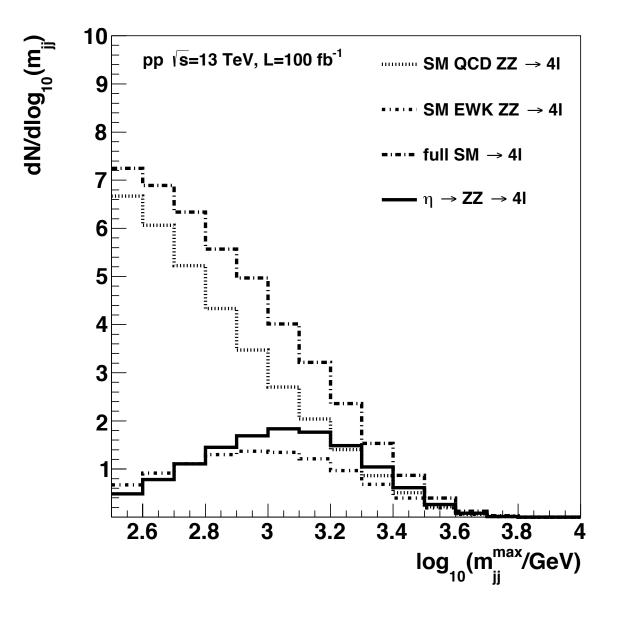



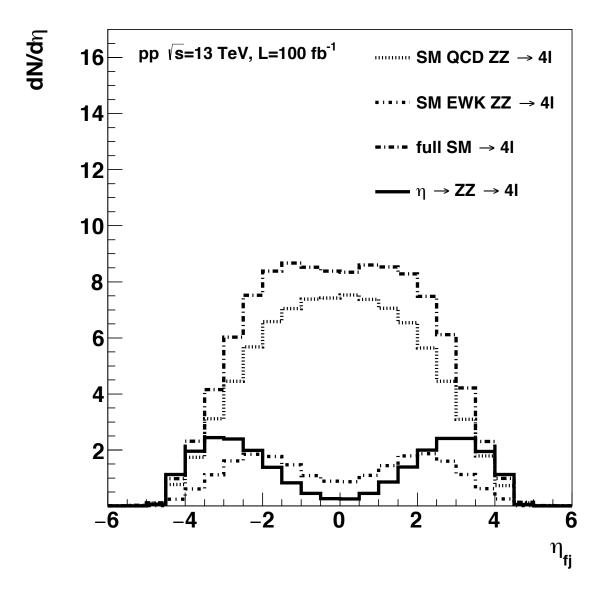
FIG. 14. 5σ discovery mass reach for the $\eta \to HH \to 4\tau$ resonance, as a function of the integrated luminosity and \sqrt{s} of a pp collider. The fractional resonance width Γ_{η}/m_{η} is fixed at 70%.

ZZ final state

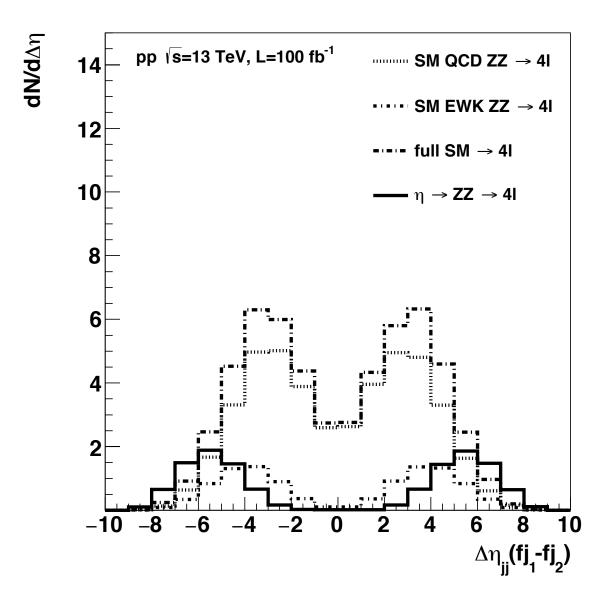
Branching ratio to hh, W_LW_L and Z_LZ_L in the 1:2:1 ratio is a definitive prediction

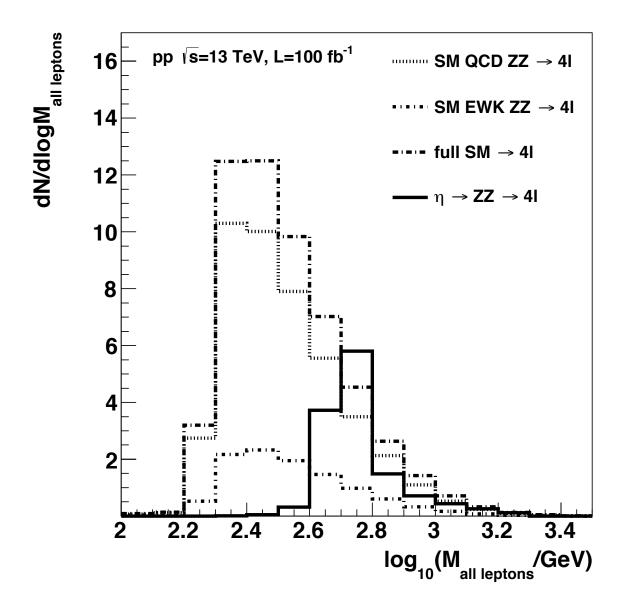


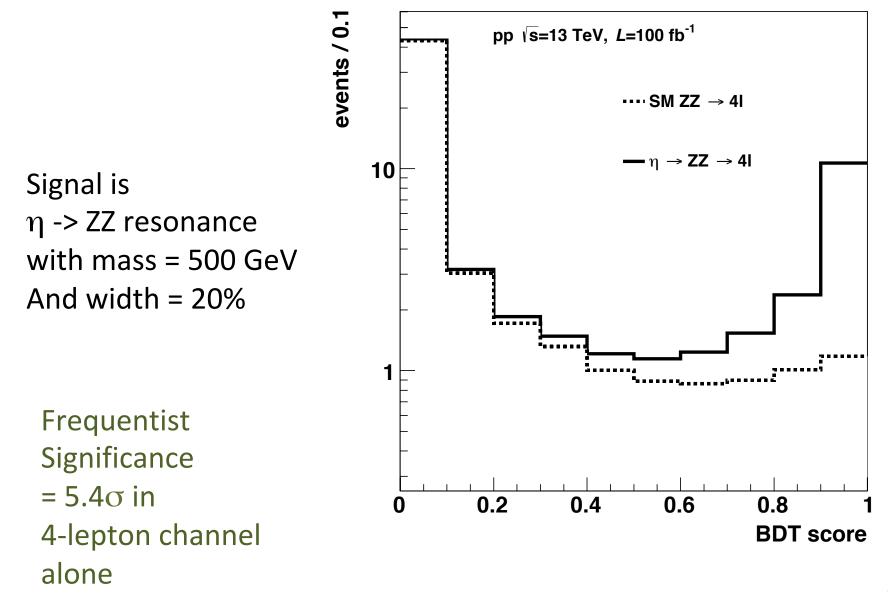
Resonance decaying to two Z_L bosons is a distinctive signature of the Goldstone nature of the Higgs boson


VBS ZZ Resonance at LHC

- Study ZZ -> 4 leptons channel
- Plots shown next use the following generator-level cuts
 - $-\eta$ (jet) < 4.9
 - η (lepton) < 2.5
 - p_T (lepton) > 7 GeV
- PYTHIA used for showering and hadronization
- Detector model
 - Each lepton efficiency = 80%
 - Particles are clustered into jets using FastJet with anti-kt algorithm and R = 0.4


Invariant Mass of forward Jets


η of forward Jets


$\Delta\eta$ of forward Jets

Invariant Mass of all four leptons

BDT Multivariate Discriminant

Conclusions

- It is conceivable that new strong dynamics in the Higgs sector may only be accessible via collisions of longitudinal vector boson scattering
 - A sort of "longitudinal vector boson portal"
- Can use resonance signatures mediating VV->η-> hh, ZZ production at high resonance mass
- No signal in Drell-Yan or gluon fusion production modes because no coupling to light fermions and gluons
- Resonance mass > 500 GeV can be discovered at LHC
- Resonance mass > 3 TeV can be discovered at 100 TeV pp collider
 - Requires tagging forward jets ~ 40 GeV and pseudorapidity ~ 6
 - VBS resonance mass reach grows nicely with integrated luminosity (better than collider energy)
- Distinctive signature, comparison between HH and VV channels can prove Composite Goldstone nature of Higgs doublet