STERILE NEUTRINOS FROM TAU DECAYS AT B FACTORIES

PRD 101(2020)9,093003 [arXiv:1908.09719]

Nicolás Neill

In collaboration with C. Dib, J.C. Helo, M. Nayak, A. Soffer, and J. Zamora-Saa Ninth LLP Community Workshop, May 27, 2021

Nicolás Neill nicolas.neill@gmail.com

Motivation

- Neutrino oscillations \Rightarrow at least two neutrinos have mass.
- Right handed neutrinos (SM singlets) allow to include neutrino masses.
- We consider the generic form of seesaw models, where the SM neutrinos are mainly the light fields ν_i with small admixtures of the extra fields N_j :

$$\nu_{\ell} = \sum_{i=1}^{3} U_{\ell i} \nu_{i} + \sum_{j} V_{\ell N_{j}} N_{j}.$$
 (1)

- The relation between masses and mixings depends on the specific seesaw model.
- We consider m_N and $V_{\ell N}$ as independent parameters.

Motivation (cont.)

- For $m_N \sim O(\text{GeV})$, the most stringent constraints are on $|V_{eN}|$ and $|V_{\mu N}|$. (e.g., meson decays.)
- There are weaker bounds on $|V_{\tau N}|$ from Z decays. (DELPHI: $e^+e^- \to Z \to N\nu_\ell$)
- We focus on the scenario where $|V_{ au N}| \gg |V_{eN}|, |V_{\mu N}|$

Heavy Neutrino Production

•
$$e^+e^- \to \tau^+\tau^-$$
 ($\sqrt{s} = 10.58$ GeV)

- **BABAR**: $N_{\tau\tau} \approx 4.6 \times 10^8$.
- Belle: $N_{\tau\tau} \approx 8.8 \times 10^8$.
- \circ Belle-II: scheduled to collect $N_{\tau\tau} \approx 4.6 \times 10^{10}$ by 2027.
- We study heavy neutrinos produced in tau decays:

$$\tau \to N + X_1 \left(\propto |V_{N\tau}|^2 \right) \tag{2}$$

- We explore the mass range $300 \text{ MeV} \lesssim m_N \lesssim 1.7 \text{ GeV}$.
- N lifetime:

$$\tau_N \sim G_F^{-2} |V_{\tau N}|^{-2} m_N^{-5}$$
Iong-lived for small m_N

Heavy Neutrino Decay

• N decays through its mixing with ν_{τ} :

 $N \to X_2 \nu_{\tau}$

• The complete decay chain:

• We focus on the case where

$$X_1^{\pm} = \pi^{\pm}, \pi^{\pm}\pi^0$$

•
$$X_2 = e^+ e^-, \mu^+ \mu^-$$

 $(X_1 = \ell \nu \text{ and } X_2 = \pi^+ \pi^$ could also be included.)

Signal Events

• The number of observed events is

$$\mathcal{N} = 2\mathcal{N}_{\tau\tau} \times \mathcal{B}(\tau \to X_1 N) \times \mathcal{B}(N \to \nu_\tau X_2) \times a \times \epsilon, \quad (3)$$

where

- $\circ N_{ au au}$: total number of tau-lepton pairs produced
- $\circ~a$: acceptance (probability for N to decay inside the detector)
- $\circ \epsilon$: reconstruction efficiency

Acceptance

- To estimate the acceptance signal events were generated with EvtGen.
- Acceptance volume: $10 \ {\rm cm} < r < 80 \ {\rm cm}, -40 \ {\rm cm} < z < 120 \ {\rm cm}.$
- Number of sterile neutrino decays inside the acceptance volume given $N_{\tau\tau}=4.6\times 10^{10}$ at Belle II:

Event Selection and Backgrounds

- The cut $|\vec{r}| > 10$ cm rejects prompt tracks and most bakground from K_S decays.
- The events are required to have only four tracks. (This rejects $e^+e^- \rightarrow B\bar{B}$ and $e^+e^- \rightarrow q\bar{q}$ events, which have high track multiplicity.)
- Additional non- $\tau\tau$ events can be reduced by exploiting the back-to-back production of the tau leptons. (e.g., in the CM, $\cos \theta_{X_1X_2,\tau} < -0.5$.)
- After applying the previous cuts, the main background comes from

$$\tau^{\pm} \to \pi^{\pm} K_L \nu_{\tau}, \ K_L \to \pi \mu \nu,$$

where the displaced π is misidentified as a muon.

• The expected yield of the K_L background is 17 events per ab^{-1} (850 events in the entire Belle II event sample).

Further Background Suppression

(Exploit constraints from signal hypothesis)

- $\tau \to X_1 N$, $N \to X_2 \nu_{\tau}$ not fully reconstructed due to ν_{τ} .
- However, it is possible to use the kinematical constraints on the decay chain to determine the 4-momenta of all particles up to a twofold ambiguity.
- \circ 12 unknowns ($p_{ au}, p_N, p_{
 u_{ au}}$)
- I2 constraints:
 - 8 from momentum conservation in each vertex.
 - 2 from m_{τ} and $m_{\nu_{\tau}}$ $(p_{\tau}^2 = m_{\tau}^2, p_{\nu_{\tau}}^2 = 0)$.
 - 2 from the direction of \vec{p}_N .
- 2-fold ambiguity from quadratic eq. \Rightarrow

2 solutions for m_N and E_{τ} .

Distributions of the N mass solutions m_2 vs. m_1 (top plots) and of the τ c.m.-energy solutions E_2 vs. E_1 (bottom plots) for signal events generated with $m_N = 1$ GeV (left plots) and for K_L background events (right plots).

• For example, requiring either $E_1 > 5$ GeV or 5 GeV $< E_2 < 5.8$ GeV retains 75% of the signal while rejecting 75% of the background.

Nicolás Neill nicolas.neill@gmail.com

Current and Projected Bounds

Expected 95% confidence-level limits, obtainable from $\tau^- \to X_1 N$, $N \to X_2 \nu$ for $X_1 = \pi^-(\pi^0)$ and $X_2 = \ell^+ \ell^-$. Also shown is the potential impact of adding the modes $X_1 = \ell \nu$ and $X_2 = \pi^+ \pi^-$.

Summary and Conclusions

- We propose a new search for a sterile neutrino N with $m_N < m_\tau$ that mixes predominantly with $\nu_\tau.$
- We make use of the large samples of $e^+e^- \rightarrow \tau^+\tau^-$ events to produce the N via $\tau \rightarrow X_1 N$ decays.
- The method exploits the long lifetime N in this mass range to greatly suppress backgrounds.
- We proposed kinematic and vertex-based constraints to further suppress background and measure the N mass if signal is observed.
- The proposed search surpasses current best limit obtained by DELPHI.

Thank you!