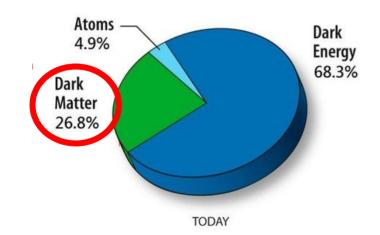
Probing the early universe with displaced new physics at colliders

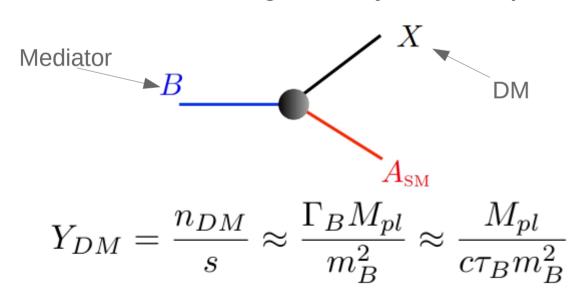
Based on arXiv:2102.06221 in collaboration with L. Calibbi, F. D'Eramo, L. Lopez-Honorez and A. Mariotti

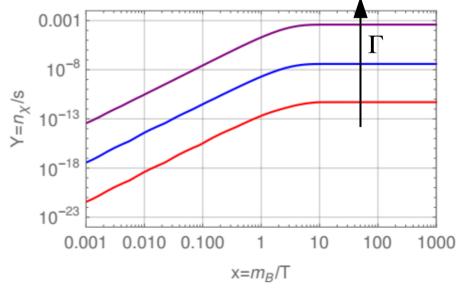

Sam Junius 9th LLP workshop 28/05/2021

Feebly interacting dark matter

- Nature of DM is still unknown despite many dedicated experiments
- Feebly interaction DM easily escapes (in)direct DM experiments
- DM can be produced through the freeze-in mechanism

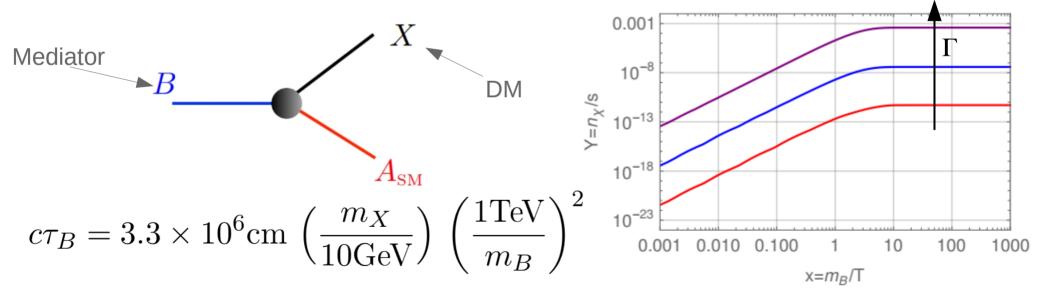
[Hall et. al. 2009]

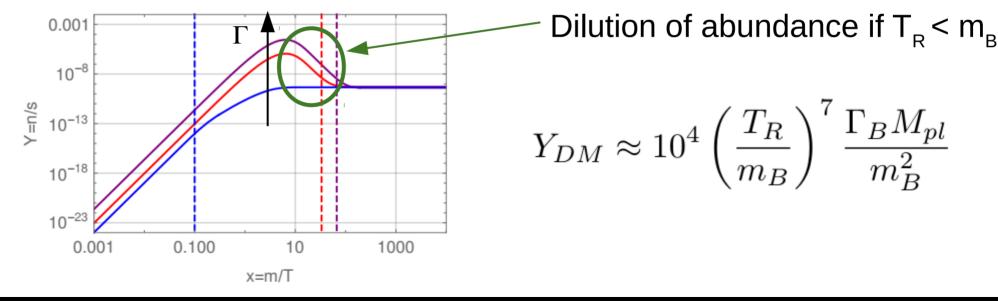



DM Relic Density:

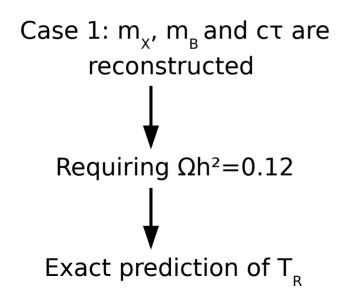
$$\Omega_{DM}h^2 = 0.12_{\tiny \text{[Planck 2018]}}$$

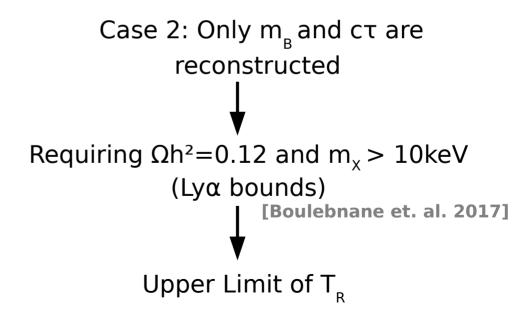
Freeze-in production of DM

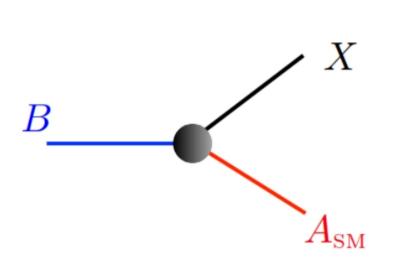

- DM is never in equilibrium with any SM particle
- Abundance gradually builds up due to mediator decay processes


Freeze-in production of DM

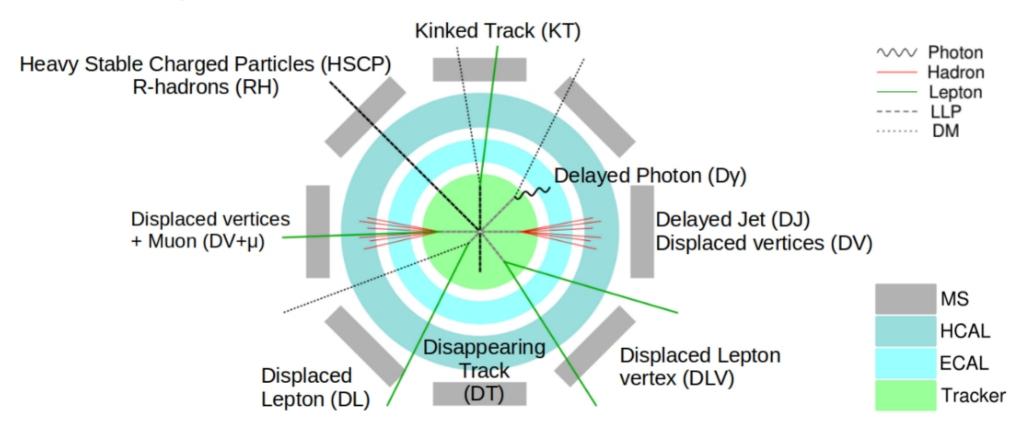
- DM is never in equilibrium with any SM particle
- Abundance gradually builds up due to mediator decay processes


Freeze-in during reheating era


- Standard freeze-in happens during radiation era $(T_R >> m_B)$
- For $T_R < m_B$, freeze-in during early matter dominated era

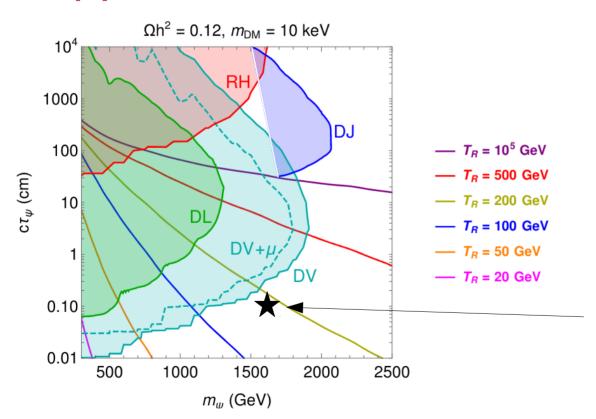

Probing early universe using the LHC

 Exploit the link between DM abundance and decay length to probe the reheating temperature in case of a discovery



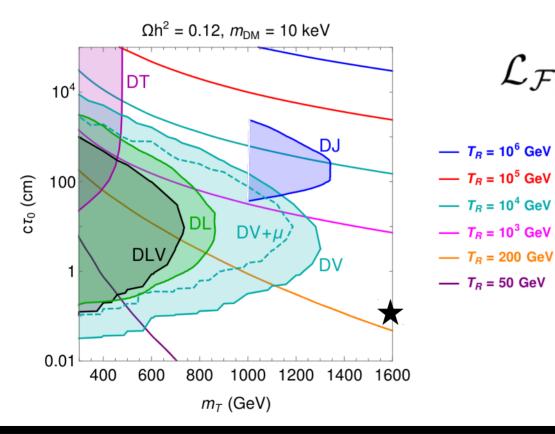
Simplified model classification

$oxedsymbol{A_{SM}}$	Spin DM	Spin B	Interaction	Label
a/1~15	0	1/2	$ar{\psi}_{SM}\Psi_B\phi$	$\mathcal{F}_{\psi_{SM}\phi}$
ψ_{SM}	1/2	0	$ar{\psi}_{SM}\chi\Phi_B$	$\mathcal{S}_{\psi_{SM}\chi}$
$F^{\mu u}$	1/2	1/2	$\bar{\Psi}_B \sigma_{\mu\nu} \chi F^{\mu\nu}$	$\mathcal{F}_{F\chi}$
Н	0	0	$H^\dagger \Phi_B \phi$	$\mathcal{S}_{H\phi}$
	1/2	1/2	$ar{\Psi}_B \chi H$	$\mathcal{F}_{H\chi}$


LLP signatures

Sensitivity to simplified models

	DV	DJ	DJ							
Label	+	+	+	DL	DLV	$\mathrm{D}\gamma$	DT	RH	HSCP	KT
	MET	MET	μ							
$\mathcal{F}_{l\phi}~\&~\mathcal{S}_{l\chi}$				√					✓	√
$\mathcal{F}_{ au\phi}~\&~\mathcal{S}_{ au\chi}$	✓	✓		√					✓	√
$\mathcal{F}_{q\phi}~\&~\mathcal{S}_{q\chi}$	✓	✓						✓		
$\mathcal{F}_{t\phi}~\&~\mathcal{S}_{t\chi}$	✓	✓	√	√				√		
$\mathcal{F}_{G\chi}$	✓	✓						√		
$\mathcal{F}_{W\chi}$	✓	✓	√	√	√	√	√			√
$\mathcal{S}_{H\phi}~\&~\mathcal{F}_{H\chi}$	✓	✓	✓	✓	√		✓			√

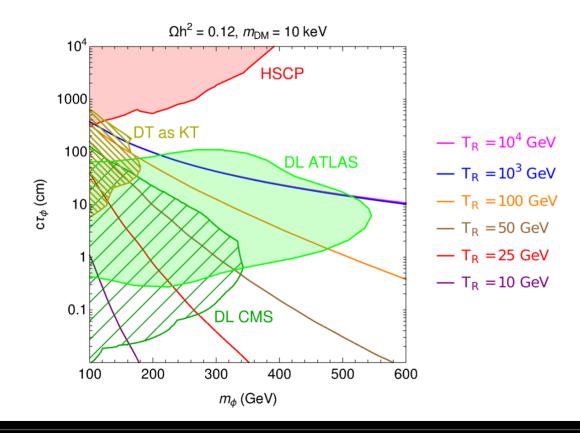

Topphilic scenario

$$\mathcal{L}_{\mathcal{F}_{t_R\phi}} \supset - \lambda_{\phi} \bar{\Psi}_B t_R \phi$$

In case of a discovery, this gives us an upper limit on T_R

Singlet-triplet model

$$\mathcal{L}_{\mathcal{F}_{W\chi}} \supset \frac{1}{\Lambda} (W_{\mu\nu}^a \bar{\chi_S} \sigma^{\mu\nu} \chi_T^a + \text{h.c.})$$


$$\chi_T = \begin{pmatrix} \chi_h^0 / \sqrt{2} & \chi^+ \\ \chi^- & -\chi_h^0 / \sqrt{2} \end{pmatrix}$$

Summary

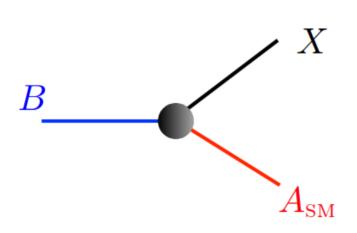
- Link between DM freeze-in production and mediator decay length
- If $T_R < m_B$, these models can be probed by LLP searches
- A displaced vertex discovery can probe the early universe
- Focusing on different signatures can help narrowing down the specific model

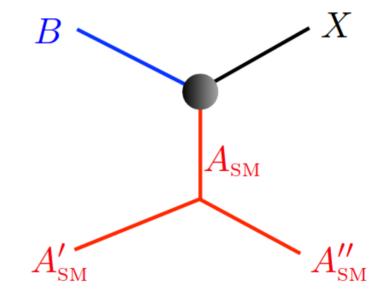
Back-up slides

Leptophilic scenario

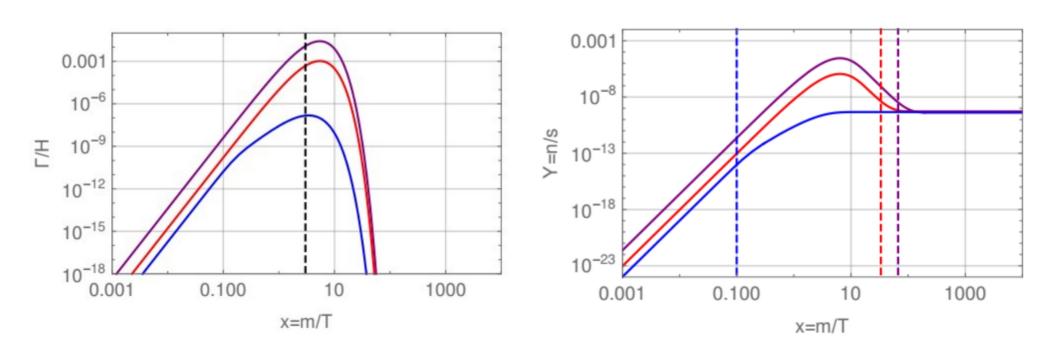
$$\mathcal{L}_{\mathcal{S}_{\ell_R \chi}} \supset - \lambda_{\chi} \Phi_B \bar{\chi} \mu_R$$

LLP searches used

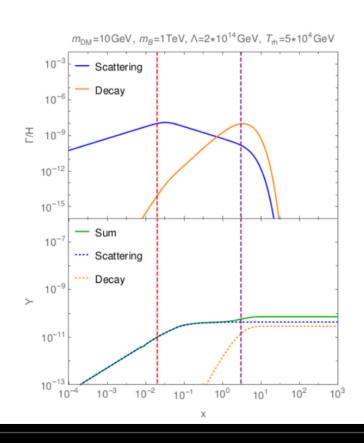

Signature	Exp. & Ref.	L	Maximal sensitivity	Label	
R-hadrons	CMS [59]	$12.9 \; {\rm fb^{-1}}$	a= > 10 m	RH	
Heavy stable charged particle	ATLAS [60]	$36.1 \; {\rm fb}^{-1}$	$c\tau \gtrsim 10 \text{ m}$	HSCP	
Disappearing tracks	ATLAS [61]	$36.1 \; {\rm fb}^{-1}$	$c\tau \approx 30 \text{ cm}$	DT	
Disappearing tracks	CMS [62, 63]	$140 \; {\rm fb}^{-1}$	$c\tau \approx 60 \text{ cm}$		
	CMS [64]†	$19.7 \; {\rm fb}^{-1}$	$c\tau \approx 2 \text{ cm}$		
Displaced leptons	CMS [65]	$2.6 \; {\rm fb^{-1}}$	$CT \approx 2 \text{ cm}$	DL	
	ATLAS [66]	$139 \; {\rm fb}^{-1}$	$c\tau \approx 5 \text{ cm}$		
Displaced vertices + MET	ATLAS [67]	$32.8 \; {\rm fb^{-1}}$	$c\tau \approx 3~\mathrm{cm}$	DV+MET	
Delayed jets + MET	CMS [68]	$137 \; {\rm fb^{-1}}$	$c\tau \approx 1 - 3 \text{ m}$	DJ+MET	
Displaced vertices $+ \mu$	ATLAS [69]	$136 \; {\rm fb^{-1}}$	$c\tau \approx 3~\mathrm{cm}$	$\mathrm{DV}{+}\mu$	
Displaced dilepton vertices	ATLAS [70]	$32.8 \; {\rm fb^{-1}}$	$c\tau \approx 1 - 3 \text{ cm}$	DLV	
Delayed photons	CMS [71]	$77.4 \; {\rm fb^{-1}}$	$c\tau \approx 1 \text{ m}$	$\mathrm{D}\gamma$	

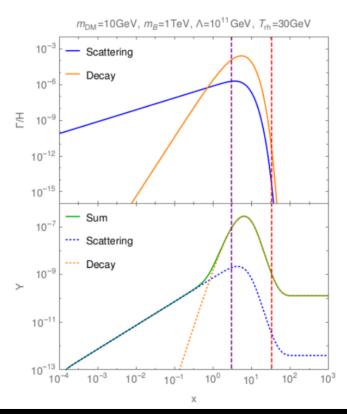

LLP searches used

- [59] CMS Collaboration, C. Collaboration, Search for heavy stable charged particles with 12.9 fb⁻¹ of 2016 data.
- [60] **ATLAS** Collaboration, M. Aaboud et al., Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV, Phys. Rev. **D99** (2019), no. 9 092007, [arXiv:1902.01636].
- [61] **ATLAS** Collaboration, M. Aaboud et al., Search for long-lived charginos based on a disappearing-track signature in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP **06** (2018) 022, [arXiv:1712.02118].
- [62] CMS Collaboration, A. M. Sirunyan et al., Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at $\sqrt{s} = 13$ TeV, arXiv:1804.07321.
- [63] CMS Collaboration, A. M. Sirunyan et al., Search for disappearing tracks in proton-proton collisions at $\sqrt{s} = 13$ TeV, arXiv:2004.05153.
- [64] CMS Collaboration, V. Khachatryan et al., Search for Displaced Supersymmetry in events [71] with an electron and a muon with large impact parameters, Phys. Rev. Lett. 114 (2015), no. 6 061801, [arXiv:1409.4789].
- [65] CMS Collaboration, Search for displaced leptons in the e-mu channel, CMS-PAS-EXO-16-022.
- [66] **ATLAS** Collaboration, G. Aad et al., Search for displaced leptons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector, arXiv:2011.07812.

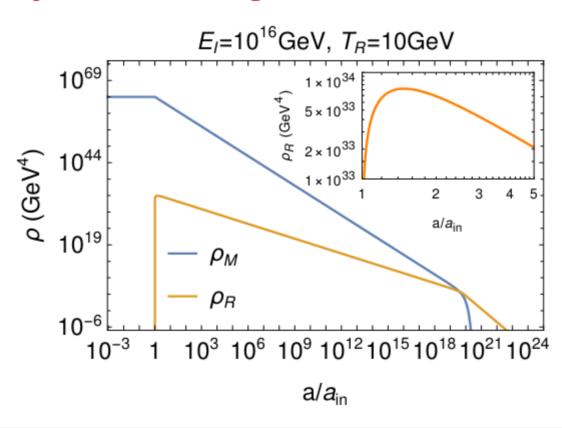

- [67] ATLAS Collaboration, M. Aaboud et al., Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector, Phys. Rev. D97 (2018), no. 5 052012, [arXiv:1710.04901].
- 68] CMS Collaboration, A. M. Sirunyan et al., Search for long-lived particles using nonprompt jets and missing transverse momentum with proton-proton collisions at √s = 13 TeV, Phys. Lett. B797 (2019) 134876, [arXiv:1906.06441].
- [69] ATLAS Collaboration, G. Aad et al., Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, arXiv:2003.11956.
- [70] ATLAS Collaboration, G. Aad et al., Search for displaced vertices of oppositely charged leptons from decays of long-lived particles in pp collisions at \sqrt{s} =13 TeV with the ATLAS detector, Phys. Lett. B801 (2020) 135114, [arXiv:1907.10037].
- 71] CMS Collaboration, A. M. Sirunyan et al., Search for long-lived particles using delayed photons in proton-proton collisions at √s = 13 TeV, Phys. Rev. D 100 (2019), no. 11 112003, [arXiv:1909.06166].

Freeze-in contribution diagrams





IR freeze-in (renormalizable operator)



UV freeze-in (non-renormalizable operator)

Inflationary reheating

