Triggering on Emerging Jets

Dylan Linthorne and Daniel Stolarski

arXiv:2103.08620

May 27th, LLP 9 Workshop

(Ref: Schwaller et al arXiv:1502.05409) (Ref: Strassler et al hep-ph/0604261)

Dark QCD and The Hidden Valley

Dark QCD confines like the strong force (QCD) some scale,

 $\sim \Lambda_d$

Hidden Valley equipped with a complicated spectrum of mesons and baryons,

$$(\pi_d, \rho_d, \ldots)$$

 $SU(3) \times SU(2) \times U(1) \times SU(3)_d$

Dark Parton Showers $\mathcal{L} \supset \frac{1}{2} M^2 Z'^{\mu} Z'_{\mu} + Z'^{\mu} \left(g_q \,\overline{q} \gamma_{\mu} q + g_d \,\overline{Q} \gamma_{\mu} Q \right)$

Emerging Jets at The LHC

$$c\tau_0 = \frac{c\hbar}{\Gamma} \approx 80 \,\mathrm{mm} \times \frac{1}{\kappa^4} \times \left(\frac{2 \,\,\mathrm{GeV}}{f_{\pi_d}}\right)^2 \left(\frac{100 \,\,\mathrm{MeV}}{m_{\mathrm{down}}}\right)^2 \left(\frac{2 \,\,\mathrm{GeV}}{m_{\pi_d}}\right) \left(\frac{M_{X_d}}{1 \,\,\mathrm{TeV}}\right)^4$$

Dedicated triggers (specific event criteria) were implemented to write a subset of data onto record completely biasing novel/unique signatures

i) Exploit existing triggers with hard ISR:

ii) "Trackless" ML classifier on trigger stream:

Benchmarks

	Model \mathbf{A}	Model \mathbf{B}
$c au_{\pi_d}$	$150 \mathrm{~mm}$	$5 \mathrm{mm}$

Scalar mediator Vector mediator $(M_X > 1 \text{TeV}, X)$ $(M_{Z'} < 1 \text{TeV}, Z')$

Types of radiation:

Trigger Efficiencies

Scalar cross section: similar to known squark production.

Z' cross section: proportional to free parameters $g_{q/d}$

$$\frac{\sigma \times \epsilon}{(\sigma \times \epsilon)_{\rm LO}} =$$

Gives a sense of the rate independent of unknown Z' freedom.

Dark Pion Decays at Truth Level, ATLAS

(Ref: Huffmann et al arXiv:1604.05036)

Using tracker hit profiles to train a ML algorithm on the trigger stream.

$$N_{cor}^i \equiv \sum_j N_{h,j}^i \left(\sqrt{(\Delta \eta)_j^2 + (\Delta \phi)_j^2} \leq \mathcal{R} \right) \quad \underset{j \in \mathcal{R}}{\text{Hits}}$$

Hits within hard jet direction

ML Trigger Results

Background:

Heavy flavours mimic E-jets with displaced vertices

$$g \to b\overline{b}$$

Available new physics bandwidth of ~1 Hz.

Due to boosts, lower lifetimes span hits considerably along all layers.

$c\tau_d$	ϵ (Bkg rej $10^{-2})$	ϵ (Bkg rej $10^{-3})$
$5 \mathrm{~mm}$	0.370	0.250
$50 \mathrm{~mm}$	0.230	0.125
$150~\mathrm{mm}$	0.122	0.060
$500 \mathrm{~mm}$	0.100	0.050

Conclusion

- Emerging jets, although novel, may pose difficulties at the triggering stage. Previous studies showed that a large massed scalar mediator is efficient enough.
- We show that triggering on lower mass vector mediators greatly benefits from the inclusion of realistic radiation.
- Online trigger strategies that employ ML techniques can use low level variables (I.e. tracker hits) to probe lower mediator masses.

Questions

Benchmarks

	$Model \ \mathbf{A}$	Model \mathbf{B}	
Λ_d	$10 \mathrm{GeV}$	$4 \mathrm{GeV}$	
m_V	$20 {\rm GeV}$	$8 { m GeV}$	
m_{π_d}	$5~{ m GeV}$	$2~{ m GeV}$	N_{c}
$c au_{\pi_d}$	$150 \mathrm{~mm}$	$5 \mathrm{mm}$	

$$imes SU(3)_d$$

 $N_c=3 ext{ and } n_f=7$

Original paper benchmarks, where a Heavy scalar mediator was explored.

Field	$SU(3) \times SU(2) \times U(1)$	$SU(3)_{\rm dark}$	Mass	Spin
Q_d	(1, 1, 0)	(3)	$m_d \ \mathcal{O}(\text{GeV})$	Dirac Fermion
X_d	$(3,1,rac{1}{3})$	(3)	$M_{X_d} \mathcal{O}(\text{TeV})$	Complex Scalar
Z_d	(1, 1, 0)	(1)	$M_{Z_d} \mathcal{O}(\text{TeV})$	Vector Boson
			-	

Scalar model has a dedicated CMS search: 1810.10069

Universality

Triggers show similar trends independent of which model it is trained on.

 $5 \,\,\mathrm{GeV}$

5 mm

 $10 \,\,\mathrm{GeV}$

500 mm

Model	Α	
Λ_d	$10 { m GeV}$	
m_V	$20~{\rm GeV}$	
m_{π_d}	$5~{\rm GeV}$	
$c au_{\pi_d}$	$150 \mathrm{~mm}$	

50 mm 500 mm

 $5 \,\,\mathrm{GeV}$

 $5 \,\,\mathrm{GeV}$