Long-lived Particles at CMS

Cristián H. Peña Fermilab May 25 2021

9th workshop of the LLP Community

CMS and LLPs

arxiv:1911.00481 — CODEX-b

- How to unlock CMS' full LLP discovery reach?
- How far can we extend the mass and lifetime?

CMS Plays a Crucial Role on LLPs

arxiv:1911.00481 — CODEX-b

- CMS is doing well for $c\tau < 1m$ and $m_{LLP} > 50$ GeV
- Enabled by precision tracker: displaced jets

CMS Plays a Crucial Role on LLPs

arxiv:1911.00481 — CODEX-b

- Goal: close coverage gaps and extend CMS reach
- Strategy: Enable a large $c\tau$ and light LLP searches

- Tracker-based quantities
 - LLPs make displaced-jet
- Access light LLPs
 - trigger on $Z \rightarrow \ell \ell$
 - New CMS sensitivity to light LLPs

Signal: up to 4 displaced jets

Bkg falls rapidly when counting the number of displaced jets (N_j^{dis})

LLP signals tend to have events with 2 or more displaced jets (N_j^{dis})

- $N_j^{dis} >= 2$ defines the signal region
- We define 7 validation samples to check the bkg estimation

Best sensitivity at BR(H→SS) ~ 5×10⁻² !!

CMS new result

- ENABLED new CMS LLP sensitivity to light LLP
- Access LLPs as light as 15 GeV with tracker-based (~1-100 mm) search

Displaced low-mass dimuons

Dimuon scouting allows unprecedented mass reach $m_{\mu\mu}\gtrsim 200\,{ m MeV}$

Strategy: Find low-mass $\mu\mu$ resonances and associated DV

 l_{xy} : Transverse displacement of the $\mu\mu$ -DV

See H. Routray talk

Displaced low-mass dimuons

Fit $m_{\mu\mu}$ with S+B model 36 total search bins (l_{xy} , pT^{μ}, isolation)

No excess found

Displaced low-mass dimuons

B(Z_D→µµ) from *JHEP* 02 (2015) 157

Including 4µ category

- $\mathcal{B}(h \rightarrow Z_D Z_D)$ exclusion ~3e-3 for m_{Zd} ~1-3 GeV
- $\mathcal{B}(h \rightarrow Z_D Z_D)$ exclusion ~2e-4 for m_{Zd} ~11-50 GeV

Extending reach to large $c\tau$

See C. Wang talk

Compact Muon Solenoid

- Lots of STEEL → bkg suppression → Ideal for LLP searches
- 4-layers of highly segmented active element → LLP signal

LLP Muon System Analysis

 Despite the lack of a dedicated trigger, CMS has opportunity to provide better sensitivity for 1 displaced vertex search. CMS has more steel to reject background

 Large shielding against bkgs: 12-27 nuclear interaction lengths

LLP Muon System Analysis

 Despite the lack of a dedicated trigger, CMS has opportunity to provide better sensitivity for 1 displaced vertex search. CMS has more steel to reject background

 Opportunity to extend discovery reach at large lifetimes (> ~few 10 meters)

Search for LLPs in Muon System

- œ

 Φ

p

→ LLP (s) decay

Search for LLPs in Muon System

 Φ

LLP decays in MS → shower

Muon System acts as sampling calorimeter

Sensitive to a broad range of LLP decays

LLP Signature in Muon System

First time this signature is explored in CMS

- LLPs that decay in the muons system leave a signature of:
 - Large cluster of hits in the muon chambers
- Muon system acts as a sampling calorimeter (new)

LLP Efficiency in CMS Muon System

Muon system acts as a sampling calorimeter

- High cluster reconstruction efficiency ~60%
- Strong dependence on decay position (Z)

LLP Muon System Analysis

- Start with ggH production mode largest cross section
- Trigger on MET (lack of dedicated trigger) recoil of Higgs against ISR
 - For large $c\tau$ one of the LLPs will decay outside the calorimeter

LLP with Muon Systems

Large signal to bkg separation

- Signal: clusters with high hit-multiplicity
 - signal-clusters with up to 1k hits
- Bkg: quickly falling distribution
 - Nearly no bkg in signal region (SR)

Expect sensitivity below BR(H→SS) ~ 1%

LLPs with CMS Muon System

SR Expected Bkg (post-fit): 2.0 ± 1.0

SR Observed: 3

LLP with Muon Systems

Best sensitivity at BR(H→SS) ~ 10⁻³ !!

CMS new result

- ENABLED CMS LLP sensitivity to larger cτ
- Access to light LLPs (< 7 GeV)
 - Sensitivity to all masses
 - Calorimeter: sensitive to LLP
 energy

Best results for $c\tau > 40$ m

CMS h→SS Summary

New results extend $c\tau$ and mass reach

Muon System Enables Broad LLP Reach

- NEW L1 (Hardware) trigger with MS signature (@Run3):
 - NEW L1 seed expected provide 20x increase in signal
 - Will enable completely new search signatures MS-MS, MS-ECAL, MS-Tracker

Outlook

- CMS released three new LLP results
- Significantly extended CMS reach for light LLPs
- Large boost in sensitivity for large $c\tau$ current best result beyond 40 m
 - @1km B(h→ss) < 20% for masses > 40 GeV
- Working on a Muon System Shower based L1 trigger for Run3: expect 20x more signal efficiency.

Thank you!

• Backups

LLP Efficiency in CMS Muon System

Muon system acts as a sampling calorimeter

- High cluster reconstruction efficiency ~60%
- Strong dependence on decay position (Z)

LLP with MS: other key selection

Combined 20x bkg rejection power

Displaced low-mass dimuons

