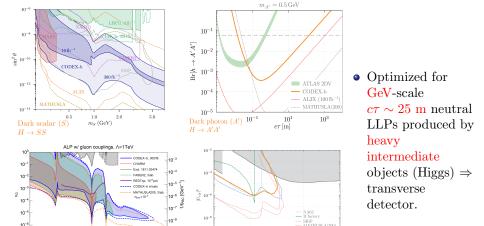
Status of the CODEX-b experiment

Biplab Dey

LLP9 workshop (virtual)


CODEX-B: A TRANSVERSE LLP DETECTOR AT LHCB

- 10³ m³ tracker box behind a 3.2 m thick shield placed transverse to LHCb. Integrated with LHCb triggerless DAQ.
- Nominal location: counting room ("1"). Or, DELPHI exhibit ("2") area.

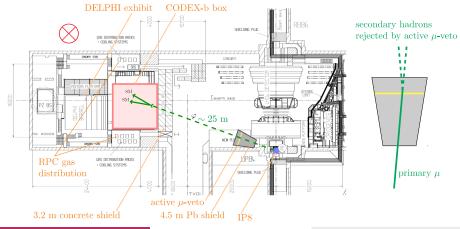
WIDE PHYSICS REACH IN HL-LHC ERA

10-9

• See our Expression of Interest (1911.00481) for further details.

m₄[GeV]

0.10

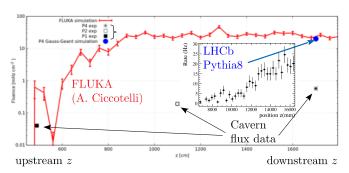

 $m_N \; [{\rm GeV}]$

A ZERO SM BACKGROUND EXPERIMENT

- Reducing SM backgrounds to $\lesssim \mathcal{O}(1)$ over entire 300/fb during HL-LHC @ LHCb is the key.
- Detailed simulations (1911.00481, 1708.09395): combination of shields, and active/topological vetoes will achieve this.
- Most relevant backgrounds:
 - Primary/secondary muons punching through concrete+Pb shield (⇒ active veto layers on CODEX-b face)
 - Primary neutrons/ $\pi^{\pm}/K^{\pm}/K_{\scriptscriptstyle L}^0$ (\Rightarrow additional Pb shielding)
- Additional potential sources:
 - LHC machine-induced background (dedicated LbMIB tool)
 - Thermal neutrons (hard to simulate)
 - Neutrinos (very low xsection).

ACTIVE VETO FOR SHIELD-INDUCED SECONDARIES

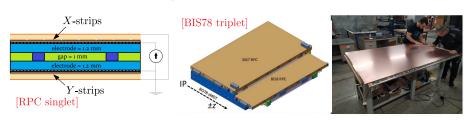
- Around 25λ ($\sim 4.5\mathrm{m}$) additional Pb shielding for hadrons. But the shield itself generates (neutral) secondary hadrons from slowed down muons.
- Dedicated active μ -veto for secondaries.



ESTIMATES FROM Geant4+Pythia8 STUDY (1911.00481)

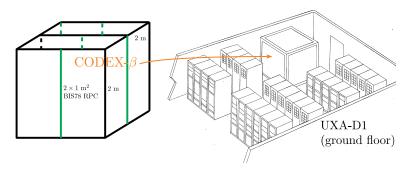
	Particle yields			
BG species	Net $(E_{\rm kin}^{\rm neutral} > 0.4 {\rm GeV})$	Shield veto rejection	Shield veto rejection	Net yield
		(total)	$(\pm/0 \text{ correlation})$	ivet yield
γ	0.54 ± 0.12	$(8.06 \pm 0.60) \times 10^4$	$(2.62 \pm 1.03) \times 10^3$	[0.000]
n	58.10 ± 4.63	$(4.59 \pm 0.15) \times 10^5$	$(3.44 \pm 0.51) \times 10^4$	
$n~(>0.8{\rm GeV})$	2.78 ± 0.25	$(1.03 \pm 0.06) \times 10^5$	$(7.45 \pm 1.92) \times 10^3$	≲1
\bar{n} (no cut)	$(3.24 \pm 0.72) \times 10^{-3}$	34.40 ± 25.80	$(7.12 \pm 2.19) \times 10^{-2}$	≪ 1
K_L^0	0.49 ± 0.05	$(1.94 \pm 0.74) \times 10^3$	54.40 ± 19.20	$\lesssim 0.1$
K_S^0	$(6.33 \pm 1.39) \times 10^{-3}$	93.90 ± 45.80	0.74 ± 0.19	≪ 1
$\nu + \bar{\nu}$	$(5.69 \pm 0.00) \times 10^{13}$	$(7.35 \pm 0.12) \times 10^6$	$(7.31 \pm 0.11) \times 10^6$	
p^{\pm}	$(2.07 \pm 0.26) \times 10^{2}$	$(9.24 \pm 0.36) \times 10^5$	$(9.24 \pm 0.36) \times 10^5$	-
e^{\pm}	$(4.53 \pm 0.02) \times 10^3$	$(4.38 \pm 0.02) \times 10^7$	$(4.38 \pm 0.02) \times 10^7$	-
π^+	34.70 ± 2.27	$(2.96 \pm 0.20) \times 10^5$	$(2.96 \pm 0.20) \times 10^5$	-
π^-	31.40 ± 2.12	$(2.68 \pm 0.19) \times 10^5$	$(2.68 \pm 0.19) \times 10^{5}$	-
K^+	0.83 ± 0.30	$(3.08 \pm 1.24) \times 10^3$	$(3.08 \pm 1.24) \times 10^3$	-
K^-	0.23 ± 0.12	$(1.12 \pm 0.63) \times 10^3$	$(1.12 \pm 0.63) \times 10^3$	-
μ^+	$(1.04 \pm 0.00) \times 10^6$	$(1.04 \pm 0.00) \times 10^{10}$	$(1.04 \pm 0.00) \times 10^{10}$	-
μ^-	$(8.07 \pm 0.01) \times 10^5$	$(8.07 \pm 0.01) \times 10^9$	$(8.07 \pm 0.01) \times 10^9$	-

CHARGED FLUX IN CODEX-B AREA

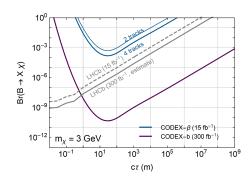

- Measured charged MIP flux along \hat{z} (beam-direction) just behind the shield wall in summer 2018 during Run 2 (1912.03846).
- \bullet Excellent agreement between LHCb and CERN-FLUKA simulation (both normalization and z-profile) .

• Cavern data reproduces the z-profile, but sees lower rate. Further checks planned in Run 3 (more later).

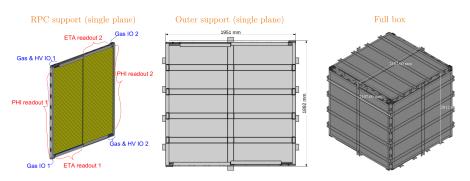
BASELINE DETECTOR TECHNOLOGY: ATLAS RPCs


- Resistive Plate Chambers (RPCs) offer cost-effective baseline for a large-area tracker as CODEX-b.
- New generation of BIS78 triplet RPCs from ATLAS muon phase-I Upgrade. Reliable QC due to established ATLAS production line.
- Chamber spatial resolution ~ 2 mm (charge-centroid) in X-Y strips; timing resolution $\sim 400/\sqrt{3} \sim 230$ ps.

 Synergy with R&D (⇒ see RPC 2020 talk by Y. Sun) for phase II BI RPCs + electronics for CODEX-b + future LLP detectors.


CODEX- β : PILOT RUN DURING RUN 3

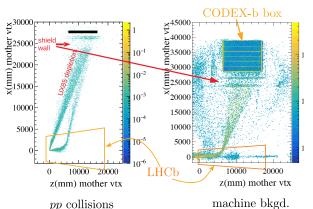
- CODEX- β : $2 \times 2 \times 2$ m³ box to be placed in (already emptied) ground floor barrack space for Run 3.
- 14 BIS78 chambers to be used. Hardware cost around 150k€ (funding secured!)


CODEX- β : PHYSICS CASE

- Primary goal is to integrate with LHCb online, reconstruct K_L^0 and measure background rates.
- Competitive sensitivity to $b \to s\chi(\to \text{hadrons})$ as well.

CODEX- β PREPARATIONS

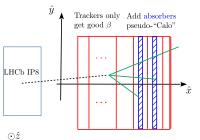
- Steady progress towards TDR preparation for LHCb Technical Board within this year.
- Technical drawings for mechanical support, gas/power supply designs ongoing (D. Northacker).



CODEX- β : R/O ELECTRONICS FOR RUN 3

- Run 3 onwards, triggerless DAQ @ 30MHz inelastic rate for LHCb.
- CODEX- β effectively acts as a sub-detector of LHCb. Hits sent to eventbuilder farm on the surface \Rightarrow HLT lines for LHCb.
- DCT \Rightarrow FPGA board collects RPC signals. Performs TDC and ships to LHCb PCIe40 via lpGBT @ around 0.5kHz estimated rate.
- One DCT per RPC \rightarrow 14 DCTs for full CODEX- β . Optimization needed for full CODEX-b (daisy chain RPCs).
- DCT time resolution is $\sim 800/\sqrt{12} \sim 230$ ps. Matches well with RPC time res.

FURTHER BACKGROUND CONSIDERATIONS


- Additional RadMon unit to be placed in CODEX- β area for Run 3 to monitor hadron backgrounds (thanks to Giuseppe Lerner).
- In discussion with LHCb lumi group as well as CERN radiation group to include CODEX-b area for Run 3 beam condition MIB studies.

 MIB will be small wrt flux from inelastic pp collisions, but needs to be calibrated properly.

OTHER ONGOING ACTIVITIES AND IDEAS

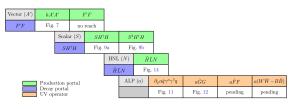
- Simulation framework for fast geometry optimization.
- Inclusion of RPC detector response in full LHCb sim framework.
- LHCb HLT lines for CODEX-b.

- Calorimetry for CODEX-b would significantly enhance the physics reach (eg. ALP $\rightarrow \gamma\gamma$)
- Absorber or pre-shower layers can also perform some PID (eg. e/γ separation)

TOWARDS THE FULL CODEX-B DETECTOR

- CODEX- β during Run 3 will give us critical experience.
- For Run 4, full UXA-D (barrack) will not be available. Partial install of CODEX-b might be possible in UXA-D1 (ground floor).
- Depends on requirements from LHCb Upgrade II sub-detector requirements (TDR in ~ 2025).

- Tentative schedule.
- Note: HL-LHC for LHCb starts only from Run 5.


CONCLUSION AND OUTLOOK

Growing collaboration (16 institutes)

- J.A. Evans D. Robinson
- H. Ramani M. Papucci
- T. Gorordo
- G. Pasztor A. De Roeck
- R. Dumps
- N. Watson
- M. Sokoloff
- R. Vari
- G. Aielli
- M. Charles
 O. Le Dortz
- E. Ben Haim V. Coco
- D. Northacker
- D. Northacke V. Gligorov

- X. Cid Vidal P. Ilten
- R. Gonzalez Suarez
 - H. Schindler
 - S. Knapen S. Farry
 - F. Polci
 - M. Williams
 - B. Nachman
- C. Vazquez Sierra J. Alimena
 - M. Borsato
 - J. Beacham
 - B. Dey J. Glover
 - P. Swallow
 - S. Lopez Solino

- CODEX- β is progressing well.
- CODEX-b offers excellent physics reach/€

• CODEX-b: total cost $\sim 10 \text{ M} \in$

The HL-LHC program needs a dedicated transverse LLP detector!