

Lesya Shchutska École Polytechnique Fédérale de Lausanne On behalf of the SND@LHC Collaboration

LLP9: Dedicated LLP detectors and projects at the LHC May 25, 2021

SND-LHC: Scattering and Neutrino Detector at the LHC

A newly proposed, compact and stand-alone experiment designed to:

- perform measurements with neutrinos
- and search for new feebly interacting particles,

produced at the LHC, in an unexplored range of $7.2 < \eta < 8.6$

- Letter of intent: LHCC-I-037, 27 Aug 2020
- Technical proposal: LHCC-P-016, 22 Jan 2021
- Experiment approval: Grey Book database, 17 Mar 2021
- Experiment website: http://snd-lhc.web.cern.ch/
- First phase: operation in Run 3 to collect 150 fb^{-1}

SND@LHC is currently a collaboration of 180 members from 20 institutes

Location: (LEP) Injection Tunnel 18, TI18

- $\bullet \sim 480$ m away from the ATLAS IP: shielding from the IP provided by 100 m rock
- charged particles are deflected by the LHC magnets

Detector design

Hybrid detector designed for:

- identification and measurement of the three neutrino flavours, ν_e , ν_μ , ν_τ
- ullet detection of feebly interacting particles, χ
- Veto plane to tag incoming muons
 - scintillating bars
- **2** Target region for ν or χ scattering
 - emulsion cloud chambers (emulsion and tungsten)
 - SciFi (scintillating fibres) planes
- **3** Muon system for produced μ ID
 - iron walls interleaved with scintillating bars

Detector key numbers

- target: 830 kg of tungsten
- angular acceptance: $7.2 < \eta < 8.6$, off-axis location
- electromagnetic calorimeter: $\sim 84 X_0$, sampling every $17 X_0$
- hadronic calorimeter: $\sim 10\lambda$ (muon system alone 8λ), sampling every λ

Target and vertex detector: Emulsion

Emulsion cloud chamber (ECC) technique for the target: tungsten layers (1mm thick) alternated with nuclear emulsion films

Submicrometric position resolution for event topology reconstruction:

$5 xy 390 \times 390 \text{mm}^2$ SciFi planes used for:

- tracking and combining information from ECC
- active layers of sampling calorimeter for energy measurement

• timing information for global event reconstruction and ToF from the IP1 measurement

SciFi planes

SiPM array for light detection: $60\mu m$ spatial resolution

Muon stations (+veto plane)

- upstream:
 - 5 planes
 - 10 bars per plane
 - \implies HCAL
- downstream
 - 3 planes
 - 2 layers per plane
 - 60 bars layer
 - $\implies \mu \text{ ID}$

Event reconstruction: first phase

Using information from electronic detectors (veto, SciFi, muon system):

- identify neutral scattered candidates
- identify muons in the final state
- identify electrons/hadrons
- reconstruct EM and hadronic showers
- measure neutrino/ χ energy

Event reconstruction: second phase

Using nuclear emulsions:

- identify EM showers
- ν/χ vertex reconstruction and secondary search
- match with candidates from electronic detectors
- complement SciFi for EM energy measurement

Neutrino physics in Run 3

ν production with DPMJET3, propagation with FLUKA, interaction with GENIE:

	Neutrinos i	n acceptance	CC neutrino	interactions	NC neutrino	interactions
Flavour	$ \langle E \rangle [GeV]$	$\mathbf{Y}\mathbf{ield}$	$ \langle \mathrm{E} \rangle \; [\mathrm{GeV}]$	$_{ m Yield}$	$\langle E \rangle [GeV]$	$_{ m Yield}$
$ u_{\mu}$	145	2.1×10^{12}	450	730	480	220
$\bar{ u}_{\mu}$	145	1.8×10^{12}	485	290	480	110
ν_e	395	2.6×10^{11}	760	235	720	70
$ar{ u}_e$	405	2.8×10^{11}	680	120	720	44
$ u_{ au}$	415	1.5×10^{10}	740	14	740	4
$ar{ u}_{ au}$	380	1.7×10^{10}	740	6	740	2
TOT		4.5×10^{12}		1395		450

Neutrino physics programme detailed in the technical proposal LHCC-P-016:

Measurement	Uncertainty		Signal/Background
	Stat.	Sys.	
$pp \to \nu_e X$ cross-section	5%	15%	
Charmed hadron yield	5%	35%	
$\nu_e/\nu_{ au}$ ratio for LFU test	30%	22%	
ν_e/ν_μ ratio for LFU test	10%	10%	
NC/CC ratio	5%	10%	
Observation of high-energy ν_{τ}			4

Dark matter signatures

- **1** DM scattering in the target volume: $pp \rightarrow V + X, V \rightarrow \chi \chi$
 - elastic: background-free signature with one charged track $\chi + p/e \rightarrow \chi + p/e$
 - inelastic: $\chi + p/n \rightarrow \chi + X$ signature is similar to ν NC \implies exploit kinematical features, look for an excess in NC events
- visible mediator decay within the detector volume: $V \rightarrow q\bar{q}$:
 - look for an isolated decay vertex
 - exploit time of flight from the IP1 (480 m)

Scattering off atomic electrons (150 fb⁻¹)

Vector portal in a minimal SM extension, with the production of a dark photon \mathcal{A}' :

$$\mathcal{L}_{\mathcal{A}'} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{m_{\mathcal{A}'}^2}{2} A'^{\mu} A'_{\mu} - \frac{1}{2} \epsilon F'_{\mu\nu} F^{\mu\nu} \tag{1}$$

- $\mathcal{A}' \to \chi \chi$, with $\chi + e \to \chi + e$ in the target
- study with full simulation: 0 SM background expected
- sensitivity dominated by small couplings: DM scattering acquires additional ϵ^2 in the yield \implies SND@LHC is an ϵ^4 experiment
- NA64 is an ϵ^2 experiment \implies has better sensitivity

Scattering off nucleons

- the ratio of cross sections $\sigma_{\rm el}/\sigma_{\rm inel}$ drops with the mediator mass
- for SM neutrinos, mediator (Z) is heavy \Longrightarrow most of events are inelastic, only $\mathcal{O}(1)$ of elastic events is expected at SND@LHC during Run 3
- elastic scattering off protons is background-free
- deep inelastic scattering (DIS) off nucleons is important for heavier mediators

Leptophobic portal

Leptophobic portal is currently less constrained:

$$\mathcal{L}_{\text{leptophob}} = -g_B V^{\mu} J_{\mu}^B + g_B V^{\mu} (\partial_{\mu} \chi^{\dagger} \chi + \chi^{\dagger} \partial_{\mu} \chi), \quad J_{\mu}^B = \frac{1}{3} \sum_{\sigma} \bar{q} \gamma_{\mu} q \tag{2}$$

Similarly to dark photon, the mediator is produced:

- lacktriangledown by proton bremsstrahlung: $p+p \rightarrow V+X$
- \bullet in decays of unflavored mesons $\pi, \eta: \pi \to V + \gamma, \quad \eta \to V + \gamma$
- **6** by Drell-Yan process: $q + \bar{q} \rightarrow V + X$

Leptophobic portal sensitivity (150 fb⁻¹)

• elastic scattering:

	$ \begin{vmatrix} \chi p \to \chi p \\ \text{Selection eff.} & \text{Background} \end{vmatrix} $							
NC DIS NC RES	$\begin{array}{c c} 2.8 \times 10^{-3} \\ 1.7 \times 10^{-1} \end{array}$	1.26 0.48						

2 inelastic scattering:

Excluded: by CDF, BES, E949 and BNL

- kinematic selection alone does not suppress SM bkg
- sensitivity is based on 3σ signal excess over SM bkg

Summary and outlook

- SND@LHC experiment is approved and is quickly advancing with construction
- commissioning and energy calibration for electronic detectors in September
- physics studies for SM and NP searches programme are ongoing

• bonus phenomenological estimates sensitivity to FIPs in arXiv:2104.09688