

Status of the FASER Experiment

Eric Torrence
University of Oregon
for the FASER Collaboration

25 May, 2021
9th Workshop of the LLP Community

FASER Concept

- Search for LLPs in far-forward pp collisions
 - Ideal for lighter (10-100 MeV) weakly-coupled particles
- Exploit huge rate in collimated beam
 - Inelastic pp cross-section: ~0.1 barns, N ~ 10¹⁶ at Run3
 - Very forward production: $\theta \sim \Lambda_{qcd} / E \sim mRad$
 - Decay length: ~100 m for m ~ 10-100 MeV, ε ~ 10-5
- Put small detector on line-of-sight collision axis

Dark Photons

- Benchmark physics process: Dark Photons A'
- Produced via kinetic mixing from e.g. π^0 decays
- Detected in decay to e+e- in FASER decay volume
- Sensitive to other LLPs and decay modes as well

FASER Location

FASER Detector Concept

August 2018 - old LEP transfer line

August 2019 - tunnel cleaned out

April 2020 - civil engineering complete

Nov. 2020 - infrastructure and magnets installed

Mar. 2020 - installation of detector components

25 May 2021

FASER Installation

March. 2020 - and cables!

FASER Installation

April. 2020 - fully installed detector CERN safety sign-off

More Installation Media

- Instagram Tour with Michaela Queitsch-Maitland
- Official CERN photoshoot here and here

 Time-lapse videos on CDS <u>here</u>

25 May 2021

Commissioning

- First cosmic run with full detector on March 23rd
- Have been running the system almost continuously since then to test remote operation and monitoring

Trigger Rates

Last Month

- 10-15 Hz trigger rate requiring 2-scintillator coincidence
 - Also 1 Hz rate of random triggers
- Very long runs (days) achieved with few problems
- Extended "High rate" tests (~600 Hz) also successful

Cosmic Rays

- Tracks observed in single station (3 layers)
 - triggered by nearby scint.
 - Rate about 1 every minute
- Double station hits seen
 - few times per day
- No 3-station tracks yet
 - expected to be very rare

Side-view - Run-001551, event 304486

25 May 2021

16

Tracker Occupancy

Strip occupancy - layer 0

- Strip occupancy in tunnel matches measurements on surface
- Worst layer has 19 hot (>10% occ.) strips out of 3820
- Setting up automated hot strip finding and DQ/monitoring

25 May 2021

Scintillator performance

Veto counter - all triggers

- Scintillators show MIP peak above noise
- Time resolution as expected from surface studies ~ 1 ns
- Can see expected correlations with track segment positions

Veto counter - quad coinc.

Offline Development Work

- Detector simulation well advanced
 - Recently added cosmic generator
 - FaserNu detector geometry included
- Reconstruction code development
 - ACTS-based tracking code making progress
 - Fast segment finder for cosmics also developed
- Automated production system
 - Implementing light-weight job scheduling with Redis rq
 - Submission of calibration jobs, reco, monitoring, streaming

FASERV

- Standard Model produces copious amounts of weakly interacting, long-lived, light particles: neutrinos
- FASERv is 1.1m long, 1.1 ton tungsten-emulsion stack at front of FASER designed for v detection
- Goal to measure neutrino cross-section for all species in collider-energy range (100 GeV - few TeV)
- 4th tracking station to be added between FASERv and rest of FASER measure muon charge (detect v_{μ} vs \overline{v}_{μ})

Neutrino physics: EPJC 80, 61 (2020)

Tech. Proposal: <u>CDS</u>

FASERv installation

- Dry run of FASERv installation/removal on Apr. 29
 - Empty box, full-weight test scheduled for Oct/Nov
 - Some modifications needed to make this easier
 - Stack will be swapped during each technical stop, must be efficient!

FASERv Pilot run in 2018

- Emulsion and Timepix detectors exposed to 12 fb⁻¹ in 2018
- Primary goal was to verify muon flux and backgrounds in TI12 & TI18 tunnels
- Secondary goal was to look for neutrinos...

30 kg Emulsion Detector in TI18

First FASER neutrino result

- Neutrino analysis from Pilot run available
- "First neutrino interaction candidates at the LHC" submitted to journal: https://arxiv.org/abs/2105.06197
- 11kg fiducial mass target, 12.2 fb⁻¹ of exposure
- BDT selection based on 5 neutral vertex attributes
- Observe 6 signal events (2.7 σ excess) over μ -induced neutral hadron background (mostly n and K) consistent with expected neutrino rate of $3.3^{+1.7}_{-0.9}$

FASER Collaboration

The FASER Collaboration has ~70 members from 19 institutes in 9 countries

http://faser.web.cern.ch/

6 May 2020 24

FASER Funding

The FASER Collaboration gratefully acknowledges our funding agencies for their continued support:

Along with the tremendous institutional support from

6 May 2020 25

Conclusions

- FASER has been installed in the LHC tunnel
- Initial commissioning in tunnel has gone smoothly
- Work on offline reconstruction, dataflow, calibration, alignment, etc. ongoing
- First physics result from neutrino pilot run submitted for publication

Looking forward to first LHC collisions of Run3!