Pre-Equilibrium Quark Gluon Plasma and its Connection to Hydrodynamics

Xiaojian Du In collaboration with Sören Schlichting

Department of Physics, Bielefeld University

Zimanyi School 2020, Budapest, Hungary (Online) Dec. 07, 2020

Pre-Equilibration Quark-Gluon Plasma

Effective Kinetic QCD

Effective Kinetic Theory (Arnold, Moore, Yaffe) at LO

AMY,JHEP01 (2003) 030 AMY,JHEP0206(2002)030 Kurkela, Mazeliauskas,PRD99 (2019) 054018

$$\frac{\partial}{\partial t}f_a(\vec{p},t) = -C_a^{2\leftrightarrow 2}[f](\vec{p},t) - C_a^{1\leftrightarrow 2}[f](\vec{p},t) - C_a^{z-\exp}[f](\vec{p},t) \quad a = g, u, \bar{u}, d, \bar{d}, s, \bar{s}$$

Explicitly solve Boltzmann equation for massless gluon and 3 light quarks/anti-quarks as an integro-differential equation

including 2 \leftrightarrow 2 elastic processes and 1 \leftrightarrow 2 inelastic processes

2 ↔ 2: Color screening by Debye mass fit to HTL calculation

1 ↔ 2: Collinear radiation including LPM effect via effective vertex resummation

Turbulence in QGP

Weak-Coupling Thermalization

 $p_{soft}(t)$ T $p_{split}(t)$ Q

to

Over-occupied systems << T

Direct energy cascade

Far from equilibrium Large separation of scales

Under-occupied systems >> T

Inverse energy cascade

Schlichting, Teaney, Ann. Rev. of Nuc & Part. Sci. 69:447 (2019)

Over-Occupied Plasma

Over-Occupied Plasma

Under-Occupied Plasma

- Bottom-up thermalization R. Baier, et al. PLB502(2001)51
- 1. Emission of (soft) quarks and gluons
- 2. Radiative breakup by multiple branchings -> build up soft thermal bath
- 3. Mini-jet energy loss -> heating up thermal bath

Under-Occupied Plasma

- Bottom up thermalization
- Kolmogorov-Zakharov spectrum
- 1. Quark follows κ =5/2 to κ =7/2
- 2. Gluon follows κ =7/2
- 3. Antiquark follows gluon (secondary production)
- Same pattern as for in-medium mini-jet/jet evolution with unified description of soft and hard sectors
- Equilibration of Jets

Soudi, Schlichting, 2008.04928

Hydrodynamization of QGP

Hydrodynamization

System initially highly anisotropic with CGC inspired gluon dist. & finite baryon/charge density

 $\widetilde{\omega} = (e+p)\tau/(4\pi\eta)$ 1st-order hydrodynamics near equilibrium

$$\frac{p_L}{e} = \frac{1}{3} - \frac{4}{9\pi} \left(\frac{\eta T_{\rm eff}}{e+p} \right) \frac{4\pi}{\tau T_{\rm eff}}$$

const.

Isotropization: Larger chemical potential Larger fraction of quarks Slower isotropization

Ineffectiveness of quark interaction: Spin degeneracy Quantum statistics

Insensitive to initial conditions: Non-equilibrium attractors from kinetic theory

Effective constitutive relations far-from equilibrium $\frac{p_L}{e} = f(\tilde{\omega})$

Isotropization

Kinetic and Chemical Equilibration

Chemical Reaction: Energy transfer Quark/antiquark produced in pairs

Chemical equilibration:

~ 2
$$\left(\frac{\eta T_{\text{eff}}}{e+p}\right) \frac{4\pi}{T_{\text{eff}}}$$

Quark/antiquark asymmetry: More quarks than antiquarks at finite density Net baryon density conserved

With all light parton degrees of freedom: Realistic matching to hydrodynamics at finite density (heavy-ion collisions at RHIC, forward rapidity at LHC, etc...)

Energy Attractor

Pre-equilibrium description connects initial state to hydrodynamics

$$\left(\tau^{\frac{4}{3}}e\right)_{\tilde{\omega}} = \left(4\pi\frac{\eta T_{\text{eff}}}{e+p}\right)^{\frac{4}{9}} \left(\frac{\pi^2\nu_{\text{eff}}}{30}\right)^{\frac{1}{9}} \left(e\tau\right)_0^{\frac{8}{9}} C_{\infty}\mathcal{E}(\tilde{\omega})$$

$$\left(\tau\Delta n_f\right)_{\tilde{\omega}} = \left(\tau\Delta n_f\right)_0$$

Input to hydrodynamics through pre-equilibrium evolution

Giacalone, Mazeliauskas, Schlichting PRL123(2019)26

Entropy Production and Scale Fixing

- Turbulence in QGP
 - Over-occupied system follows a self-similar universal scaling, not limited to pure Yang-Mills theory but also for QCD, even for moderately strongly coupled system
 - Under-occupied system follows a bottom-up thermalization
- Hydrodynamization of QGP
 - Ineffectiveness of quarks interaction in isotropization / equilibration
 - Kinetic theory provides effective constitutive relation far from equilibrium
 - Hydrodynamization ~ 1.5 Kinetic equilibration time << Isotropization time
 - Realistic matching to hydrodynamics at finite density with universal attractor and fixed certain scales from experiments (charged particle multiplicity, baryon density, etc...)