

Szymon Harabasz for the HADES Collaboration

Introduction

Data Analysis

Differential Spectra

Comparison Au+Au vs. Ag+Ag

Future

Summary

TECHNISCHE UNIVERSITÄT DARMSTADT

Meet the HADES

Interaction rate:

- 8 kHz in Apr 2012 Au+Au (s_{NN})^{1/2} = 2.42 GeV
- 16kHz in Mar 2019 Ag+Ag $(s_{NN})^{1/2} = 2.42$ GeV and 2.55 GeV Pion and nucleon beams:
- Reference measurements (vacuum, cold QCD matter)
- Electromagnetic structure of baryons and hyperons

The HADES physics case

[HADES Collab., Nature Physics 15 (2019) 1040]

Quark-gluon plasma

• High μ_B region of QCD phase diagram

250

200

• Properties of matter occuring in neutron star mergers

T < 70 MeV, $ρ \approx 3ρ_0$ in both cases

Electromagnetic probes of strongly interacting matter

Schematic spectral distribution of lepton pairs emitted in ultra-relativistic heavy ion collisions

TECHNISCHE

UNIVERSITÄT

Towards the few-GeV energy regime

Lower beam energy:

- Lower temperature
- Less abundant meson production
- Slower thermalization
- Local thermal equilibrium at best

Possibilities:

- Microscopic transport models
- Coarse graining of the hadronic transport
 - Simulate (ensemble average of) events with transport model
 - Divide the evolution in 4D spacetime cells
 - Calculate bulk properties in each cell (T, ρ_B, v_{coll})
 - Calculate thermal dilepton rates for these parameters
 - Add up the contributions of all the cells

Phys. Rev. C 66, 014903 (2002) Phys. Rev. C 92, 014911 (2015) Eur. Phys. J. A, 52 5 (2016) 131 Phys. Rev. C 98, 054908 (2018)

Momentum distribution of nucleons (based on UrQMD)

TECHNISCHE

UNIVERSITÄT DARMSTADT

DATA ANALYSIS

Electron Identification

- Track quality selection
- Energy loss
- Particle velocity
- Electromagnetic shower
- Cherenkov radiation
- All combined in a multivariate analysis (neural networks)
- Purity of single lepton identification at least 98 %

PID with multi-layer perceptron (MLP)

- Train and test do no split \rightarrow No signal of overtraining
- Plateau reached
 → Sufficient number
 of training epochs

- Distributions drop rapidly
 → Good discrimination power
- Train and test overlap

 → Ability of the model to
 generalize for unseen data

Selection of Signal Leptons

Identification of single e⁺ and e⁻

Extracting in-medium radiation

- pp and np measured at the same beam energy account for primary interaction
- Cocktail of long-lived meson sources is simulated
- After subtracting the two one gets in-medium radiation
- This can be extrapolated to 4π without much systematics

DIFFERENTIAL SPECTRA

Thermal dileptons at high μ_{B}

Thermal dilepton production rates

$$\frac{dR_{ll}}{d^3p} = -\frac{\alpha_{\rm EM}^2}{\pi^3 M^2} \int f^B(p_0;T) \frac{1}{3} g_{\mu\nu} \operatorname{Im} \Pi^{\mu\nu}_{\rm EM}(M,p;\mu_B,T)$$
Boltzmann factor

- Boltzmann factor dominates the exponential shape of the spectrum if ImΠ_{EM}/M² does not change much with M
- Slope of the <u>invariant</u> mass not affected by the fireball expansion
- True measure of the (average) source temperature

Thermal dileptons at high $\mu_{\rm B}$

- Melting of p clearly visible
- Collisional broadening is not sufficient to account for that

p melting handled properly by local equilibrium (CG) approach

CG FRA: Phys. Rev. C 92, 014911 (2015) CG GSI-Texas A&M: Eur. Phys. J. A, 52 5 (2016) 131 CG SMASH: Phys. Rev. C 98, 054908 (2018) HSD: Phys. Rev. C 87, 064907 (2013) PLUTO: J. Phys. Conf. Ser 219, 032039 (2010)

Excess yield Dependence on the centrality and p_t

- Stronger dependence at higher p_t
- None of the models describes all the trends fully

Temperature Dependence on the centrality and p_t

- Stronger dependence at higher p_t
- None of the models describes all the trends fully

Boltzmann fits to transverse momentum

Assumes pure Boltzmann nature of the source:

$$\frac{d^3 N}{d\vec{p}} \propto \exp\left(-\frac{E}{k_{\rm B}T}\right)$$

$$k_{\rm B}T_{\rm slope} = k_{\rm B}T_{\rm kin} + \frac{1}{2}M_{\rm ee}c^2\langle\beta\rangle^2$$

- Fit to the model points:
 - CG: $T_{\rm kin} = 65 \text{ MeV}/k_{\rm B}$, $\langle \beta \rangle = 0.19$
 - HSD: $T_{\rm kin} = 74 \text{ MeV}/k_{\rm B}$, $\langle \beta \rangle = 0.05$

TOWARDS THE DILEPTON EXCITATION FUNCTION

140 [J. H. Otto, PhD project, JLU Gießen] ${}^{\circ} \, dN_{corr} / dM_{ee} \, \left[MeV/c^{2}_{-1} \right]^{-1} \\ {}^{\circ} 010^{-8} \, 10^{-9} \\ {}^{\circ} 010^{-10} \\$ Ag+Ag √s_{NN}=2.55 GeV 0-40% Ag+Ag √s_{NN} = 2.42 GeV HADES work in progress 100 10^{-3} HADES work in progress $\alpha_{e^*e^*} > 9^\circ, p_1 > 0.1 \text{ GeV/c}$ Data 0-40% ---- 0.5×(pp+np)-η_ Cocktail A π⁰ - Dalitz data _____η - Dalitz ω - Dalitz 10⁻⁵ CocktailA sum $\boxtimes \omega \rightarrow e^+e^$ iii φ → e⁺e΄ 140 -Sum 10-6 Ę[°]10^{-11'} PMT-based photodetector Event display of the 10 for HADES RICH **RICH** detector 10-12 10^{-8} 10-13 Number of raw signal pairs 200 400 600 800 1000 1200 1400 0 0.2 0.4 0.6 0.8 0 M_{ee} (GeV/c²) M_{ee} [MeV/c²] Experiment # analyzed events $M_{ee} < 0.12 \text{ GeV/c}^2$ $0.12 < M_{ee} < 0.45 \text{ GeV/c}^2$ $M_{ee} > 0.45 \text{ GeV/c}^2$ Au+Au (s_{NN})^{1/2}= 2.42 GeV 2.4 x 10⁹ 1.15×10^{5} 1.53×10^{4} 581 Very high quality of the data! Ag+Ag $(s_{NN})^{1/2}$ = **2.42** GeV 5.9 x 10⁸ 1.12×10⁵ 1.59×10⁴ 901

1.53×10⁵

10916

New data set from March 2019 beam time

8.80×10⁵

07.12.2020 | Zimányi School Winter Workshop 2020 | Szymon Harabasz | 18

4.0 x 10⁹

 $Ag+Ag (s_{NN})^{1/2} = 2.55 \text{ GeV}$

Exciting physics around the corner

Conclusions

- HADES explores baryon rich matter at SIS 18
- Properly extracted dilepton excess yield agrees well with theory predictions
- Differential spectra depending on p_t and rapidity have been presented
- Boltzmann temperature and characteristics of the spectra function are studied
- Upgraded RICH photodetector (FAIR Phase 0, together with CBM) allows for unprecedented precision of dielectron data

Stay tuned for...

THANK YOU FOR YOUR ATTENTION

EXTRA SLIDES

Azimuthal anisotropy of virtual photons

- Calculate the flow of the excess radiation $v_2^{ex} = \frac{1+r}{r} \cdot v_2^{in} \frac{1}{r} \cdot v_2^{bg}$
- Estimate hadron flow contribution: $\pi^0:90\% \rightarrow r = \frac{1-0.9}{0.9}, v_2^{\pi} = -0.051614$
 - η : 10% -- assume the same value v_2^{π}

- HADES is capable of extracting v₂ of thermal dileptons
- For more conclusive results larger statistics is needed

Consistent (within uncertainties) with thermal ansatz $T_{slope} \propto 1/cosh(y)$

