Study of central exclusive production in proton-proton collisions at $\sqrt{s} = 510$ GeV with STAR detector at RHIC

Tomáš Truhlář

for the STAR collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

20th Zimányi School Winter Workshop December 7 - 11 2020, Budapest, Hungary

Introduction

• Central Exclusive Production (CEP) through Double Pomeron Exchange (DPE) provides a gluon-rich environment for particle production

STAR 🕁

- CEP is considered to be a potential source of glueballs
- Glueballs are bound states consisting of only of gluons and are predicted by the QCD theory
- Despite its theoretical predictions, the existence of a glueball has not been confirmed yet
- The first CEP through DIPE was measured at Intersecting Storage Rings and since it has been studied at numerous experiments (AFS, WA76, NA22, CDF, UA8, STAR, CMS, ATLAS...)

- Colliding protons stay intact and are measured in the Roman Pots (RP)
- Produced **central** system X is well separated by rapidity gaps $\Delta \eta_{1,2}$ from the outgoing protons *p*
- **Central** system X is fully measured in the Time Projection Chamber (TPC) and in the Time-of-Flight (TOF) systems
- Each proton "emits" a Pomeron
- The Pomerons fuse and produce neutral system X
- Double Pomeron Exchange is expected to be dominant at the RHIC energies
- I focus on $p + p \rightarrow p \ h^+ h^- p$, $h^+ h^-$ stands for $\pi^+ \pi^-$, $K^+ K^-$ and $p\bar{p}$
- To verify **exclusivity** of the process we used

$$p_{\rm T}^{miss} := \left(\vec{p_1} + \vec{p_2} + \vec{h}_+ + \vec{h}_- \right)_{\rm T} = 0$$

 \Rightarrow events with small $p_{\rm T}^{\rm miss}$ are ${\rm Exclusive}$

 $p + p
ightarrow p \stackrel{\Delta \eta_1}{\oplus} X \stackrel{\Delta \eta_2}{\oplus} p$

- Tracking of charged particles in the TPC covering $|\eta| < 1$ and full azimuthal angle
- Precise particle identification through the measurement of dE/dx and TOF
- Forward rapidity Beam-Beam Counters $(2.1 < |\eta| < 5.0)$ used to ensure rapidity gaps
- Silicon Strip Detectors (SSD) in RP allow full reconstruction of the forward proton momentum

- Roman Pot Phase II* has been used since 2015
- Detectors are mounted in 4 stations 2 stations on each side of STAR
- Each station holds one RP above and one RP below the beamline
- Each RP vessels contains a SSD package with active area of roughly $79 \times 49 \text{ mm}^2$
- Each package consists of a scintillation trigger counter and 4 SSDs with spatial resolution of $\approx~30~\mu{\rm m}$

Data sample & event selection

STAR 🛧

Data sample:

- Data from proton-proton collisions at $\sqrt{s}=510~{
 m GeV}$
- 622M events with CEP triggers were analyzed

Events selection:

- Exactly two tracks in Roman Pots inside the p_x , p_y fiducial region with all eight silicon planes used in reconstruction
- Exactly two primary TPC tracks matched with two TOF hits and originating from the same vertex
- Total charge of those tracks equals 0 (looking for h^+h^-)
- |z-position of vertex| < 80 cm
- + Good TPC track quality cuts and $|\eta| < 0.7$
- Exclusivity cut: $p_{\rm T}^{\rm miss} < 100~{\rm MeV}$
- Particles were identified using the $d\mathsf{E}/d\mathsf{x}$ and TOF
- After all the above selection criteria: 62077 $\pi^+\pi^-,$ 1697 K^+K^- and 125 $p\bar{p}$

6 / 11

- Particles were identified using combined information from the TPC $(\chi^2_{dE/dx})$ and TOF (m^2_{TOF})
- $\pi^+\pi^-$ pairs production is dominant, as expected in DIPE process at RHIC energies
- Kaons and protons can be seen in dE/dx plot
- Peaks of pions, kaons and protons about their real mass squared can be seen
- Pions misidentified as kaons, using only the dE/dx information, can be seen as well

- The expected features in the invariant mass distribution are seen:
 - a drop at about 1 GeV, negative interference of $f_0(980)$
 - a peak at about 1270 MeV, consistent with $f_2(1270)$
- Features similar to those at $\sqrt{s}=200~{\rm GeV}$ are observed

- Spectra were divided into two $\Delta \varphi$ regions, the difference of azimuthal angles of the forward protons \Rightarrow different Pomeron dynamics
- A suppression of $f_2(1270)$ in $\Delta \varphi < 90^\circ$ can be seen
- An enhancement at low invariant mass in $\Delta arphi < 90^\circ$ is observed

CEP in p+p at 510 GeV with STAR

STAR 🖈

Invariant mass of K^+K^- compared to $\sqrt{s} = 200$ GeV results

- A peak at 1 GeV (possible φ(1020)) is close to the K⁺K⁻ mass threshold, more studies have to be made: determination of non-exclusive background (p + φ + X + p)
- Peaks at 1.3 and 1.5 GeV are consistent with $f_2(1270)$ and $f_2(1525)$, respectively
- Differentiation into two $\Delta \varphi$ regions needs to be done and studied

- The invariant mass spectrum of $p\bar{p}$ pairs does not show any resonances
- Consistent with the measurement at $\sqrt{s} = 200 \text{ GeV}$
- Data has large statistical errors and more studies need to be done to make any conclusions

STAR 🖈

Summary:

- The first results on the CEP of $\pi^+\pi^-$, K^+K^- and $p\bar{p}$ pairs in pp collisions at $\sqrt{s} = 510$ GeV measured by the STAR experiment at RHIC have been presented
- Measurement of the diffractively scattered protons allowed full control of the interaction's kinematics and verification of its exclusivity
- The invariant mass spectra of $\pi^+\pi^-$, K^+K^- and $p\overline{p}$ pairs confirmed features seen in previous measurements
- Interesting features are seen, like the peak at about 1 GeV in K^+K^-

Outlook:

- There are ongoing studies of $\pi^+\pi^-$, K^+K^- , $p\bar{p}$ and also $\pi^+\pi^-\pi^+\pi^-$ channels
- An analysis involving the partial wave analysis in the $\pi^+\pi^-$ channel is planned

Thank you!

Backup

• Particles were identified using combined information from the TPC $(\chi^2_{dE/dx})$ and TOF (m^2_{TOF})

$$\chi^2_{dE/dx}(XX) = \left(n\sigma^{trk1}_X\right)^2 + \left(n\sigma^{trk2}_X\right)^2 \tag{1}$$

• m_{TOF}^2 is derived from the assumption that both particles are of the same type ($m_1^2 = m_2^2 = m_{\text{TOF}}^2$)

