Tomáš Truhlář
for the STAR collaboration

Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague

20 ${ }^{\text {th }}$ Zimányi School Winter Workshop
December 7-11 2020, Budapest, Hungary

- Central Exclusive Production (CEP) through Double Pomeron Exchange (DPE) provides a gluon-rich environment for particle production
- CEP is considered to be a potential source of glueballs
- Glueballs are bound states consisting of only of gluons and are predicted by the QCD theory
- Despite its theoretical predictions, the existence of a glueball has not been confirmed yet
- The first CEP through DIPE was measured at Intersecting Storage Rings and since it has been studied at numerous experiments (AFS, WA76, NA22, CDF, UA8, STAR, CMS, ATLAS...)

Tomáš Truhláǎ

- Colliding protons stay intact and are measured in the Roman Pots (RP)
- Produced central system X is well separated by rapidity gaps $\Delta \eta_{1,2}$
 from the outgoing protons p
- Central system X is fully measured in the Time Projection Chamber (TPC) and in the Time-of-Flight (TOF) systems
- Each proton "emits" a IPomeron
- The $\mathbb{P o m e r o n s}$ fuse and produce neutral system X
- Double \mathbb{P} omeron Exchange is expected to be dominant at the RHIC energies
- I focus on $p+p \rightarrow p h^{+} h^{-} p$,
$h^{+} h^{-}$stands for $\pi^{+} \pi^{-}, K^{+} K^{-}$and $p \bar{p}$
- To verify exclusivity of the process we used

$$
\begin{gathered}
p_{\mathrm{T}}^{\text {miss }}:=\left(\vec{p}_{1}+\vec{p}_{2}+\vec{h}_{+}+\vec{h}_{-}\right)_{T}=0 \\
\Rightarrow \text { events with small } p_{\mathrm{T}}^{\text {miss }} \text { are Exclusive }
\end{gathered}
$$

- Tracking of charged particles in the TPC covering $|\eta|<1$ and full azimuthal angle
- Precise particle identification through the measurement of $\mathrm{dE} / \mathrm{dx}$ and TOF
- Forward rapidity Beam-Beam Counters ($2.1<|\eta|<5.0$) used to ensure rapidity gaps
- Silicon Strip Detectors (SSD) in RP allow full reconstruction of the forward proton momentum

- Roman Pot Phase II* has been used since 2015
- Detectors are mounted in 4 stations 2 stations on each side of STAR
- Each station holds one RP above and one RP below the beamline
- Each RP vessels contains a SSD package with active area of roughly $79 \times 49 \mathrm{~mm}^{2}$
- Each package consists of a scintillation trigger counter and 4 SSDs with spatial resolution of $\approx 30 \mu \mathrm{~m}$

Data sample:

- Data from proton-proton collisions at $\sqrt{s}=510 \mathrm{GeV}$
- 622 M events with CEP triggers were analyzed

Events selection:

- Exactly two tracks in Roman Pots inside the p_{x}, p_{y} fiducial region with all eight silicon planes used in reconstruction
- Exactly two primary TPC tracks matched with two TOF hits and originating from the same vertex
- Total charge of those tracks equals 0 (looking for $h^{+} h^{-}$)
- |z-position of vertex|<80 cm
- Good TPC track quality cuts and $|\eta|<0.7$
- Exclusivity cut: $p_{\mathrm{T}}^{\text {miss }}<100 \mathrm{MeV}$
- Particles were identified using the $\mathrm{dE} / \mathrm{dx}$ and TOF
- After all the above selection criteria: $62077 \pi^{+} \pi^{-}, 1697 K^{+} K^{-}$and $125 p \bar{p}$

- Particles were identified using combined information from the TPC $\left(\chi_{d E / d x}^{2}\right)$ and TOF ($m_{\text {TOF }}^{2}$)
- $\pi^{+} \pi^{-}$pairs production is dominant, as expected in DPE process at RHIC energies
- Kaons and protons can be seen in $d E / d x$ plot
- Peaks of pions, kaons and protons about their real mass squared can be seen
- Pions misidentified as kaons, using only the $\mathrm{dE} / \mathrm{dx}$ information, can be seen as well

- The expected features in the invariant mass distribution are seen:
- a drop at about 1 GeV , negative interference of $f_{0}(980)$
- a peak at about 1270 MeV , consistent with $f_{2}(1270)$
- Features similar to those at $\sqrt{s}=200 \mathrm{GeV}$ are observed
- Spectra were divided into two $\Delta \varphi$ regions, the difference of azimuthal angles of the forward protons \Rightarrow different Pomeron dynamics
- A suppression of $f_{2}(1270)$ in $\Delta \varphi<90^{\circ}$ can be seen
- An enhancement at low invariant mass in $\Delta \varphi<90^{\circ}$ is observed

- A peak at 1 GeV (possible $\phi(1020)$) is close to the $K^{+} K^{-}$mass threshold, more studies have to be made: determination of non-exclusive background ($p+\phi+X+p$)
- Peaks at 1.3 and 1.5 GeV are consistent with $f_{2}(1270)$ and $f_{2}(1525)$, respectively
- Differentiation into two $\Delta \varphi$ regions needs to be done and studied

- The invariant mass spectrum of $p \bar{p}$ pairs does not show any resonances
- Consistent with the measurement at $\sqrt{s}=200 \mathrm{GeV}$
- Data has large statistical errors and more studies need to be done to make any conclusions

Summary:

- The first results on the CEP of $\pi^{+} \pi^{-}, K^{+} K^{-}$and $p \bar{p}$ pairs in $p p$ collisions at $\sqrt{s}=510 \mathrm{GeV}$ measured by the STAR experiment at RHIC have been presented
- Measurement of the diffractively scattered protons allowed full control of the interaction's kinematics and verification of its exclusivity
- The invariant mass spectra of $\pi^{+} \pi^{-}, K^{+} K^{-}$and $p \bar{p}$ pairs confirmed features seen in previous measurements
- Interesting features are seen, like the peak at about 1 GeV in $K^{+} K^{-}$

Outlook:

- There are ongoing studies of $\pi^{+} \pi^{-}, K^{+} K^{-}, p \bar{p}$ and also $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$channels
- An analysis involving the partial wave analysis in the $\pi^{+} \pi^{-}$channel is planned

Thank you!

Backup

- Particles were identified using combined information from the TPC $\left(\chi_{d E / d x}^{2}\right)$ and TOF ($m_{\text {TOF }}^{2}$)

$$
\begin{equation*}
\chi_{d E / d x}^{2}(X X)=\left(n \sigma_{X}^{t r k 1}\right)^{2}+\left(n \sigma_{X}^{t r k 2}\right)^{2} \tag{1}
\end{equation*}
$$

- $m_{\text {TOF }}^{2}$ is derived from the assumption that both particles are of the same type $\left(m_{1}^{2}=m_{2}^{2}=m_{\text {TOF }}^{2}\right)$

$$
\begin{gather*}
t_{1}-t_{0}=L_{1} \sqrt{1+\frac{m_{1}^{2}}{p_{1}^{2}}} \tag{2}\\
t_{2}-t_{0}=L_{2} \sqrt{1+\frac{m_{2}^{2}}{p_{2}^{2}}} \tag{3}\\
t_{1}-t_{2}=L_{1} \sqrt{1+\frac{m_{1}^{2}}{p_{1}^{2}}-L_{2} \sqrt{1+\frac{m_{2}^{2}}{p_{2}^{2}}}} \tag{4}\\
A \cdot\left(m_{\text {TOF }}^{2}\right)^{2}+B \cdot m_{\text {TOF }}^{2}+C=0, \tag{5}
\end{gather*}
$$

