
Hydrodynamics with 50 particles. What does it mean and how

to think about it?

G.Torrieri

Based on 2007.09224 ,shortened version of
https://www.youtube.com/watch?v=oLYouz0YMHM

https://www.youtube.com/watch?v=oLYouz0YMHM


• The necessity to redefine hydro

– Small fluids and fluctuations
– Statistical mechanicists and mathematicians

• A possible answer:

– Describing equilibrium at the operator level using the Zubarev operator
– Definining non-equilibrium at the operator level using Crooks theorem

Relationship to usual hydrodynamics analogous to ”Wilson loops” vs
”Chiral perturbation” regarding usual QCD

• Discussion, extensions, implementations etc.



Some experimental data warmup (Why the interest in relativistic hydro ?)
(2004) Matter in heavy ion collisions seems to behave as a perfect fluid,
characterized by a very rapid thermalization

Based on vn fit to low viscosity to ideal hydro



The conventional widsom
Hydrodynamics is an ”effective theory”, built around coarse-graining and
”fast thermalization”. Fast w.r.t. Gradients of coarse-grained variables
If thermalization instantaneus, then isotropy,EoS enough to close evolution

Tµν = (e+ P (e))uµuν + P (e)gµν

In rest-frame at rest w.r.t. uµ

Tµν = Diag (e(p), p, p, p)

(NB: For simplicity we assume no conserved charges, µB = 0 )



If thermalization not instantaneus,

Tµν = T eq
µν +Πµν , uµΠ

µν = 0

∑

n

τnΠ∂
n
τΠµν = −Πµν +O (∂u) +O

(
(∂u)2

)
+ ...

A series whose ”small parameter” (Barring phase transitions/critical
points/... all of these these same order):

K ∼ lmicro

lmacro
∼ η

sT
∇u ∼ DetΠµν

DetTµν
∼ ...

and the transport coefficients calculable from asymptotic correlators of
microscopic theory

Navier-Stokes ∼ K , Israel-Stewart ∼ K2 etc.



But data surprises us!



CMS  1606.06198

BSchenke 1603.04349

H.W.Lin 1106.1608

1606.06198 (CMS) : When you consider geometry differences, hydro with
O (20) particles ”just as collective” as for 1000. Thermalization scale ≪
color domain wall scale.

Little understanding of this in ”conventional widsom”



Hydrodynamics in small systems: “hydrodynamization”/”fake equilibrium”
A lot more work in both AdS/CFT and transport theory about
”hydrodynamization”/”Hydrodynamic attractors”

Kurkela et al
1907.08101..

Fluid-like systems far from equilibrium (large gradients )! Usually from 1D
solution of Boltzmann and AdS/CFT EoMs! “hydrodynamics converges
even at large gradients with no thermal equilibrium”

But I have a basic question: ensemble averaging!



• Ensemble averaging , 〈F ({xi} , t)〉 6= F ({〈xi〉} , t)
suspect for any non-linear theory. molecular chaos in Boltzmann, Large
Nc in AdS/CFT, all assumed . But for O (50) particles?!?!

• How do microscopic, macroscopic and quantum corrections talk to eac
other? EoS is given by p = T lnZ but ∂2 lnZ/∂T 2, dP/dV ??

• How does dissipation work in such a “semi-microscopic system”? If
Tµν → T̂µν what is Π̂µν Second law fluctuations? Sometimes because of
a fluctuation entropy decreases!

None of these issues depend directly on mean free path, can be seen in
Boltzmann or AdS/CFT! “Local equilibrium” ill-defined.



System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

Statistical mechanics: This is a system in global equilibrium, described
by a partition function Z(T, V, µ) , derivatives give averages, 〈E〉
,fluctuations

〈
(∆E)2

〉
etc.

Fluid dynamics: This is the state of a field in local equilibrium which can
be perturbed in an infinity of ways. The perturbations will then interact
and dissipate according to the Euler/N-S equations

Reconciling these means a rigorous treatment of fluctuations, which are
non-perturbative (vortices! Nicolis et al, 1011.6396)



If you take what you learned in statistical mechanics and perturb it, you
get a millenium problem!
Wild solutions, anomalous dissipation etc...

I am a physicist so I care little about the ”existence of ethernal solutions” to
an approximate equation, Turbulent regime and microscopic local equilibria
need to be consistent



The hope...

Considering fluctuations non-perturbatively will conceptually stabilize
hydrodynamics, perhaps fluctuations and instabilities help local
thermalization!



Our proposal



Every statistical theory needs a ”state space” and an ”evolution dynamics”
The ingredients

State space:Zubarev hydrodynamics Mixes micro and macro DoFs

Dynamics: Crooks fluctuation theorem provides the dynamics via a
definition of Πµν from fluctuations

T̂µν is an operator, so any decomposition, such as T̂µν
0 + Π̂µν must be

too!



Zubarev partition function for local equilibrium: think of Eigenstate
thermalization...
Let us generalize the GC ensemble to a co-moving frame E/T → βµT

µ
ν

ρ̂(Tµν
0 (x),Σµ, βµ) =

1

Z(Σµ, βµ)
exp

[
−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

Z is a partition function with a field of Lagrange multiplies βµ , with
microscopic and quantum fluctuations included.

Effective action from ln[Z] . Correction to Lagrangian picture?

All normalizations diverge but hey, it’s QFT! (Later we resolve this! )



This is perfect global equilibrium. What about imperfect local?

• Dynamics is not clear. Becattini et al, 1902.01089: Gradient expansion
in βµ . Reproduces Euler and Navier-Stokes, but...

– 2nd order Gradient expansion (Navier stokes) non-causal perhaps...
– Use Israel-Stewart, Πµν arbitrary perhaps...
– Foliation dΣµ arbitrary but not clear how to link to Arbitrary Πµν

• What about fluctuations? Coarse-graining and fluctuations mix? How
does one truncate?



An operator formulation

T̂µν = T̂µν
0 + Π̂µν

and T̂µν
0 truly in equilibrium!

ρ̂(Tµν
0 (x),Σµ, βµ) =

1

Z(Σµ, βµ)
exp

[
−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

describes all cumulants and probabilities

〈Tµν
0 (x1)T

µν
0 (x2)...T

µν
0 (xn)〉 =

∏

i

δn

δβµ(xi)
lnZ



and also the full energy-momentum tensor

〈Tµν(x1)T
µν(x2)...T

µν(xn)〉 =
∏

i

δn

δgµν(xi)
lnZ

What this means

• Equilibrium at ”probabilistic” level

T̂µν = T̂µν
0 + Π̂µν

• KMS Condition obeyed by ”part of density matrix” in equilibrium,
“expand” around that! An operator constrained by KMS condition is
still an operator! ≡ time dependence in interaction picture



Does this make sense

T̂µν
0 + Π̂µν , ρ̂Tµν =

ρ̂T0 + ρ̂Π0

Tr (ρ̂T0 + ρ̂Π0)
≃ ρ̂T0 (1 + δρ̂)

For any flow field βµ and lagrangian we can define

ZT0(J(y)) =

∫
Dφ exp

[
−
∫ T−1(x

µ
i )

0

dτ ′
∫

d3x (L(φ) + J(y)φ)

]
∝

∝ exp
[
−β0T̂00

]∣∣∣
βµ=(T−1(x,t),~0)



E.g. Nishioka, 1801.10352 〈x| ρ |x′〉 =

=
1

Z

∫ τ=∞

τ=−∞

∫
[Dφ,Dy(τ)Dy′(τ)] e−iS(φy,y′)·δ

[
y(0+)− x′

]
δ
[
y′(0−)− x

]
︸ ︷︷ ︸

δJi(y(0
+))

δJi(x
′)

δJj(y(0
−))

δJj(x)

⇒ δ2

δJi(x)δJj(x′)
ln [ZT0(T

µν, J)× ZΠ(J)]J=J1(x)+J2(x′)

J1(x) + J2(x
′) chosen to respect Matsubara conditions!

Any ρ can be separated like this for any βµ . The question is, is this a
good approximation? “Close enough to equilibrium”

The source J related to the smearing in “weak solutions”. Pure maths
angle?



Entropy/Deviations from equilibrium

• In quantum mechanics Entropy function of density matrix

s = Tr(ρ̂ ln ρ̂) =
d

dT
(T lnZ)

Conserved in quantum evolution, not coarse-graining/gradient expansion

• In IS entropy function of the dissipative part of E-M tensor

nν∂ν (su
µ) = nµΠ

αβ

T
∂αββ , ≥ 0

nµ = dΣµ/|dΣµ|,Πµν arbitrary. How to combine coarse-graining? if
vorticity non-zero nµu

µ 6= 0



What about fluctuations

nν∂ν (su
µ) = nµΠ

αβ

T
∂αββ , ≥ 0

• If nµ arbitrary cannot be true for “any” choice

• 2nd law is true for “averages” anyways, sometimes entropy can decrease

We need a fluctuating formulation!

• “Statistical” (probability depends on “local microstates”)

• Dynamics with fluctuations, time evolution of βµ distribution



So we need

• a similarly probabilistic definition of Π̂µν = T̂µν − T̂µν
0 as an operator!!

• Probabilistic dynamics, to update Π̂µν, T̂µν !

Crooks fluctuation theorem!

From talk
Gabriel Landi

Relates fluctuations, entropy in small fluctuating systems (Nano,proteins )



Crooks fluctuation theorem!

P (W )/P (−W ) = exp [∆S]

P(W) Probability of a system doing some work in its usual thermal
evolution

P(-W) Probability of the same system “running in reverse” and decreasing
entropy due to a thermal fluctuation

∆S Entropy produced by P (W )



Looks obvious but...

Is valid for systems very far from equilibrium (nano-machines, protein
folding and so on)

Proven for Markovian processes and fluctuating systems in contact with
thermal bath

Leads to irreducible fluctuation/dissipation: TUR (more later!)

Applying it to locally equilibrium systems within Zubarev’s formalism is
straight-forward . Since ratios of probabilities, divergences are resolved!



How is Crooks theorem useful for what we did? Guarnieri et al,
arXiv:1901.10428 (PRX) derive Thermodynamic uncertainity relations from

ρ̂ness ≃ ρ̂les(λ)e
Σ̂ Zles

Zness
, ρ̂les =

1

Zles
exp

[
−Ĥ

T

]

ρ̂les is Zubarev operator while Σ is calculated with a Kubo-like formula

Σ̂ = δβ∆Ĥ+ , Ĥ+ = lim
ǫ→0+

ǫ

∫
dteǫte−Ĥt∆ĤeĤt

Relies on

lim
w→0

〈[
Σ̂, Ĥ

]〉
→ 0 ≡ lim

t→∞

〈[
ˆΣ(t), Ĥ(0)

]〉
→ 0

This “infinite” is “small” w.r.t. hydro gradients. ≡ Markovian as in Hydro
with lmfp → ∂ but with operators→ carries all fluctuations with it!



P (W )/P (−W ) = exp [∆S] Vs Seff = lnZ

KMS condition reduces the functional integral to a Metropolis type
weighting, ≡ periodic time at rest with βµ

Markovian systems exhibit Crooks theorem, two adjacent cells interaction
outcome probability proportional to number of ways of reaching outcome
. The normalization divergence is resolved since ratios of probabilities
are used . “instant decoherence/thermalization” within each step

Relationship to gradient expansion similar to relationship between Wilson
loop coarse-graining ( Jarzynski’s theorem, used on lattice ,Caselle et al,
1604.05544) with hadronic EFTs



Applying Crooks theorem to Zubarev hydrodynamics: Stokes theorem

Wσ∼ Ω

−W

−
∫

Σ(τ0)

dΣµ

(
T̂µνβν

)
= −

∫

Σ(τ ′)

dΣµ

(
T̂µνβν

)
+

∫

Ω

dΩ
(
T̂µν∇µβν

)
,

true for “any” fluctuating configuration.



Wσ∼ Ω

−W

Let us now invert one foliation so it goes “backwards in time” assuming
Crooks theorem means

exp
[
−
∫
σ(τ)

dΣµβνT̂
µν
]

exp
[
−
∫
−σ(τ)

dΣµβνT̂µν
] = exp

[
1

2

∫

Ω

dΩµ
µ

[
Π̂αβ

T

]
∂ββα

]



Small loop limit
〈
exp

[∮
dΣµω

µνβαT̂αν

]〉
=

〈
exp

[∫
1
2dΣµβ

µΠ̂αβ∂αββ

]〉

A non-perturbative operator equation,divergences cancel out...

Π̂µν

T

∣∣∣∣∣
σ

=

(
1

∂µβν

)
δ

δσ

[∫

σ(τ)

dΣµβνT̂
µν −

∫

−σ(τ)

dΣµβνT̂
µν

]

Note that a time-like contour produces a Kubo-formula

t
Kubo



Ω

t

dV

A sanity check: For a an equilibrium spacelike dΣµ = (dV,~0) (left-panel)
we recover Boltzmann’s

Πµν ⇒ ∆S =
dQ

T
= ln

(
N1

N2

)



A sanity check

t
Kubo

When η → 0 and s−1/3 → 0 (the first two terms in the hierarchy),
Crooks fluctuation theorem gives P (W ) → 1 P (−W ) → 0 ∆S → ∞ so
Crooks theorem reduces to δ-functions of the entropy current

δ (dΣµ (su
µ)) ⇒ nµ∂µ (su

µ) = 0

We therefore recover conservation equations for the entropy current, a.k.a.
ideal hydro



Crooks theorem: thermodynamic uncertainity relations
Andr M. Timpanaro, Giacomo Guarnieri, John Goold, and Gabriel T. Landi
Phys. Rev. Lett. 123, 090604

〈
(∆Q)2

〉

〈Q〉2
≥ 2

∆S(W )

Valid locally in time!
d

dτ
∆S ≥ 1

2

d

dτ

〈Q〉2
〈(∆Q)2〉

Relates thermal fluctuations and dissipation, producing an irreducible
uncertainity. Non-dissipative nano-engines fluctuate like crazy, produces
“dissipation” anyway



COnsequences: Hydro-TUR? Separate flow into potential and vortical part

βµ = ∂µφ+ ζµ , nµ → T∂µφ , ωµν = gµν|comoving

A likely TUR is

〈[Tµγ, T
γ
ν ]〉

〈Tµν〉2
≥ Cǫµγκ 〈T γκ〉 βµ

Παβ∂βζα
, C ∼ O (1)



Ω

t

dV

Deform the equilibrium contour and get Kubo formula! (right panel)

C = lim
w→0

Re [F (w)]

Im [F (w)]
, F (w) =

∫
d3xdt 〈T xy(x)T xy(0)〉 ei(kx−wt)



−dissipation does not vanish at
zero viscosity

"will be proven by
a different generation!"

Vlad Vicol (talk)

〈[Tµγ, T
γ
ν ]〉

〈Tµν〉2
≥ O (1) ǫµγκ 〈T γκ〉βµ

Παβ∂βζα

Fluctuations+Low viscosity ⇒ Turbulence ⇒ high vorticity ⇒ dissipation!
(usually mathematicians consider incompressible fluids, non-relativistic!)



Towards equations: Gravitational Ward identity!

∂α
{〈[

T̂µν(x), T̂αβ(x
′)
]〉

−

−δ(x− x′)
(
gβµ

〈
T̂αν(x

′)
〉
+ gβν

〈
T̂αµ(x

′)
〉
− gβα

〈
T̂µν(x

′)
〉)}

= 0

Small change in Tµν related to infinitesimal shift! Conservation of
momentum!

Can be used to fix one component of βµ = uµ/T , so uµu
µ = −1 and

(βµβ
µ)−1/2 = T weights Π̂µν in a way that conserves Π̂µν + T̂µν

0



Putting everything together: Dynamics at Z level

〈Tµν〉 =
2√−g

δ lnZ

δgµν
= 〈T0〉µν +Πµν

〈Tµν
0 〉 = δ2 lnZ

δβµdnν
, 〈Πµν〉 = 1

∂µβν
∂γ

d

d ln(βαβα)
[βγ lnZ]

∂α

[
2√−g

δ2 lnZ

δgµνδgαβ
− δ(x− x′)

2√−g

(
gβµ

δ lnZ

δgαν
+ gβν

δ lnZ

δgαµ
− gβα

δ lnZ

δgνµ

)]
= 0

and, finally, Crook’s theorem

δ2

δgµνδgαβ
lnZ =

√−g

2

βκ

2ωµνβα
∂βn

κ∂γ
d

d ln(βαβα)
[βγ lnZ]



Ito process

T̂µν(t) = T̂µν(t0) +

∫
∆αβ

[
T̂µαT̂βν

]
+

∫
1

2
dΣµβνΠ̂αβ∂

αββ

lnZ|t+dt =

∫
Dgµν(x)T

µν|t+dt , βµ|t+dt =
δ lnZ|t+dt

δTµν
nν

At every point in a foliation, dynamics is regulated by a stochastic term
and a dissipation term. Can be done numerically with montecarlo with an
ensemble of configurations at every point in time...

Need: Euclidean correlator in equilibrium 〈Tµν(x)Tµν〉 (x′)



A numerical formulation

Define a field βµ field and nµ

Generate an ensemble of

lnZ|t+dt =

∫
Dgµν(x)T

µν|t+dt , βµ|t+dt =
δ lnZ|t+dt

δTµν
nν

According to a Metropolis algorithm ran via Crooks theorem

Reconstruct the new β and Πµν . The Ward identity will make sure
βµβ

µ = −1/T 2

Computationally intensive (an ensemble at every timestep), but who
knows?



A semiclassical limit?

∂µ

〈
T̂µν

〉
= 0 , ∂µ

〈
T̂µν
0

〉
= −∂µ

〈
Π̂µν

〉

Integrating by parts the second term over a time scale of many ∆µν gives,
in a frame comoving with dΣµ

∫ τ

0

dτ ′
〈
Π̂µν

〉
∂µβν ∼ βµ∂µ

〈
Π̂µν

〉
+
〈
Π̂µν

〉
= F (∂n≥1βµ, ...)

where F (βµ) is independent of Πµν . (Because local entropy is maximized
at vanishing viscosity F () depends on gradients. Israel-Stewart

However , results of, e.g., Gavassino 2006.09843 and Shokri 2002.04719
suggest that fluctuations with decreasing entropy have a role at first order
in gradient!



What next?
Zubarev

Crooks
+



A 1D example
β,Π are numbers and there is no vorticity so no Σ either!

Tµν
0 = U−1

(
e 0
0 −p(E)

)
U , U = (1− β2)−1

(
1 β
β −1

)

Πµν =

(
0 Π
Π 0

)
, Σµ ∝ βµ

Random matrix distribution of {β, e} ↔ {π}

P ({e}+ dββw)

P ({e} − dββw)
∝ exp

[
{Π}β−1 {∂β}

]
δ (Ward[e, β, π])

Ward identity can fix {β} from {π}, rest is Markov chain



Polarization,Chemical potential, rotations,accellerations,...

βµT
µν → βµT

µν + µNµ +WJ µ

F.Becattini et al, 2007.08249, Prokhorov et. al. 1911.04545: Global
equilibrium under general “passive” non-inertial transformation

A paradox: State in “Global equilibrium” (Maximum entropy) but
generally does not obey KMS conditions Stationarity/stability!

Global/local equilibrium not the same.

2nd law of thermodynamics defined locally, “entropy” frame dependent
in non-inertial fluctuating system

How do you translate all this to dynamics?



Polarization,Chemical potential, rotations,accellerations,...

βµT
µν → βµT

µν + µNµ +WJ µ

Crooks Approach allows us to resolve these ambiguities straight-forwardly.

• System evolves to a state where KMS condition obeyed by
proper time in the local foliation, ensemble foliation-independent

• Gauge potentials will lead to non-local correlations that never equilibrate,
Nµ → Nµ + U∂µU

GT, 1810.12468



Conclusions

• The observation of hydrodynamic behavior with 50 particles forces us
to consider a non-perturbative contribution of fluctuation to dynamics.
Perhaps fluctuations and turbulence help thermalization?

• A possible definition for such a non-perturbative fluctuating
hydrodynamics is...

– Zubarev hydrodynamics for the ”ideal part”
– Crooks fluctuation theorem for the rest


