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Motivation and Procedure

• How does anisotropic flow develop on a system ?

• Do all vn behave equally ?

• We solve the Boltzmann equation analytically
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Early time

• Eccentricities generate momentum anisotropies

• We focus on the early time behaviour of the system.
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General particle density
The distribution is decomposed in a series as

f ≡ f (t, ~r , ~p) = f0 + t(∂t f )t=0 +
t2

2
(∂2t f )t=0 +O(t3)

The Boltzmann equation: ∂t f = − ~p
E
~∇r f + C

f = f0+t(− ~p
E
~∇r f +C )t=0+

t2

2
(

(~p~∇r )2

E 2
f +∂tC−

~p

E
~∇rC )t=0+O(t3)

Or

ff .s. = f0 − t
~p

E
~∇r f0 + t2

(~p · ~∇r )2

2E 2
f0 +O(t3)

f = ff .s. + tC0 +
t2

2
(∂tC −

~p

E
~∇rC )t=0 +O(t3)
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Anisotropic flow coefficients

vn =

∫
f cos(nφ)d3xd3p∫

fd3xd3p

For 2↔ 2 interactions we have

C ∝
∫

(f3f4 − f1f2)vrσd
3p2,3,4

The gain term has an small impact overall (Anisotropic flow, N.
Kersting )

C ∝ −
∫

f1f2vrσd
3p2
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Flow for a large Knudsen number

We only consider terms at order σ.

Kn ∝ λm.f .p → λm.f .p ≈
1

nσ
→ Kn ∝ σ−1

The initial distribution is required to

• Vanish at r →∞
• Be initially isotropic in momentum ( i.e. vn(t = 0) = 0)

• Contain massless particles

We will work in 2d from now.
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Elliptic flow for a large Knudsen number

dv2
dt
∝ −

∫
vrσf1f2 cos(2φ1)

∫
vr f1,0f2,0 cos(2φ1) = 0→ No anisotropies initially

t
∫
vr f1,0

~p2
E2

~∇r f2,0 cos(2φ1) = 0→ Odd in momentum

t2
∫
vr cos(2φ1)(f1,0

( ~p2 ~∇r )2f2,0
2E2

+ ...)σ ∝ t2σ cos(2θ)f0 ∝ ε2
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vn

For the elliptic flow we found

v2 ∝ t3ε2

For the triangular and quadrangular flow coefficients

v3 ∝ t4ε3 v4 ∝ t5(αε22 + βε4)

Therefore
vn ∝ tn+1

Suggested behaviour B. H. Alver, C. Gombeaud, M. Luzum, and
J.-Y. Ollitrault, Phys.Rev.C 82 (2010), 034913
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Special case

f0 =
N

4π2R2T 2
e−

r2

2R2 [1− 4ε2
r2

R2
cos(2(θ − ψ2))e−

r2

2R2 ]e−p/T
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Number of rescatterings
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For the transport simulation see Fluctuations of anisotropic flow in
transport, H. Roch, Thursday 8:30.
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Number of rescatterings
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Even small Kn can be described.
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Elliptic flow

The behaviour of v2 is captured specially at large Kn.
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t/R ≈ 1.5 but the expansion is still well behaved, see more
Anisotropic flow in non-equilibrated systems , N. Kersting.
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Going to 3 dimensions

In 3d the system develops flow slower for the same Knudsen
number ( Kn = 25 ).
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Summary and Outlook

• The anisotropic flow coefficients scale as vn ∝ tn+1 for kinetic
theory.

• Good comparison for Nresc and v2 with a transport simulation
for different Kn.

• Move towards smaller Kn.

• Exploring further the effects of 3d and study massive systems.

Thank You
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Gain term

The inclusion of 2→ 2 interactions has an small impact on v2.
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Quantum effects

• Quantum effects (bosons,fermions) change the collision kernel

• Assuming that we have a gas of mesons, the elliptic flow
becomes

dv c
2

dt ∝
−
∫
vrσf1f2(1 + f3)(1 + f4)cos(2φ1)d2xd2p1d

2p2d
2p3d

2p4
• All ”quantum” terms are zero, for example

∫
t2

(~p3 · ~∇r )2

2E 2
f3,0vrσcos(2ϕ1)f1,0f2,0f4,0d

2xd2p1,2,3,4

• What we learn: Only quantitative but no qualitative
differences when including quantum effects
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Massive

• Including mass implies a more complicated form of the relative
velocity

vr =
√

(1− cos(φ1 − φ2)β1β2)2 − (1− β21)(1− β22)

Assumption → Particles 1 and 2 have the same mass and the
same fixed energy i.e. m1 = m2 = m E1 = E2 = E = ct

vr =√
(1− cos(φ1 − φ2)(1−m2/E 2))2 − (1− (1−m2/E 2))2

• Expanding up tor order m2

vr = 1− (1− m2

E 2
)cos(φ1 − φ2)

• What we learn: No qualitative differences
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