Soft and hard diffraction and photon exchange processes at the LHC

Christophe Royon University of Kansas, Lawrence, USA 20th Zimanyi School, Budapest, Hungary

December 8 2020

- Soft diffraction: evidence for the odderon by comparing pp and $p\bar{p}$ data
- Hard diffraction at the LHC
- Photon exchange processes and beyond standard model physics

Soft diffraction at the LHC: What is the odderon?

- Multi-gluon exchanges in hadron-hadron interactions in elastic *pp* interactions (Bartels-Kwiecinski-Praszalowicz)
- From B. Nicolescu: The Odderon is defined as a singularity in the complex plane, located at J = 1 when t = 0 and which contributes to the odd crossing amplitude

- Leads to contributions on 2, 3,... gluon exchanges in terms of QCD for the perturbative odderon
- Colorless C-odd 3-gluon state (odderon) predicts differences in elastic dσ/dt for pp and pp̄ interactions since it corresponds to different amplitudes/ interferences

Measurement of elastic scattering at Tevatron and LHC

- Study of elastic pp → pp reaction: exchange of momentum between the two protons which remain intact
- Measure intact protons scattered close to the beam using roman pots installed both by D0 and TOTEM collaborations
- From counting the number of events as a function of |t| (quadri-momentum transferred square at the proton vertex measured by tracking the protons), we get dσ/dt

D0 elastic $p\bar{p} \ d\sigma/dt$ cross section measurements

 D0 collected elastic pp̄ data with intact p and p̄ detected in the Forward Proton Detector with 31 nb⁻¹ Phys. Rev. D 86 (2012) 012009

31 m

• Measurement on elastic $p\bar{p} \ d\sigma/dt$ at 1.96 TeV for 0.26 < |t| < 1.2 GeV²

TOTEM elastic $pp \ d\sigma/dt$ cross section measurements

- Elastic *pp* $d\sigma/dt$ measurements: tag both intact protons in TOTEM roman pots 2.76, 7, 8 and 13 TeV
- Very precise measurements at 2.76, 7, 8 and 13 Tev: Eur. Phys. J. C 80 (2020) no.2, 91; EPL 95 (2011) no. 41004; Nucl. Phys. B 899 (2015) 527; Eur. Phys. J. C79 (2019) no.10, 861

Soft and hard diffraction and photon exchange processes at the LHC

Strategy to compare pp and $p\bar{p}$ data sets

- In order to identify differences between pp and pp̄ elastic dσ/dt data, we need to compare TOTEM measurements at 2.76, 7, 8, 13 TeV and D0 measurements at 1.96 TeV
- All TOTEM dσ/dt measurements show the same features, namely the presence of a dip and a bump in data, whereas D0 data do not show this feature

- Bump over dip ratio measured for *pp* interactions at ISR and LHC energies
- Bump over dip ratio in *pp* elastic collisions: decreasing as a function of \sqrt{s} up to ~ 100 GeV and flat above
- D0 $p\bar{p}$ shows a ratio of 1 given the fact that no bump/dip is observed in $p\bar{p}$ data within uncertainties: more than 3σ difference between pp and $p\bar{p}$ elastic data (assuming flat behavior above $\sqrt{s} = 100 GeV$)

Reference points of elastic $d\sigma/dt$

• Define 8 characteristic points of elastic pp $d\sigma/dt$ cross sections (dip, bump...) that are feature of elastic pp interactions

- Determine how the values of |t| and $d\sigma/dt$ of characteristic points vary as a function of \sqrt{s} in order to predict their values at 1.96 TeV
- We use data points closest to those characteristic points (avoiding model-dependent fits)
- Data bins are merged in case there are two adjacent dip or bump points of about equal value
- This gives a distribution of t and $d\sigma/dt$ values as a function of \sqrt{s} for all characteristic points

• Fit of all reference points using the following formulae:

$$|t| = a \log(\sqrt{s} [\text{TeV}]) + b$$

 $d\sigma/dt) = c\sqrt{s} [\text{TeV}] + d$

- The same form is used for the 8 reference points (this is an assumption and works to describe all characteristic points): this simple form is chosen since we fit at most 4 points, corresponding to $\sqrt{s} = 1.96$, 7, 8 and 13 TeV
- We also tried alternate parametrizations leading to similar results
- \bullet Leads to very good χ^2 per dof, better than 1 for most of the fits
- By extrapolating the fits, leads to predictions on |t| and $d\sigma/dt$ at 1.96 TeV for each characteristic point

Variation of t and $d\sigma/dt$ values for reference points

Fits of TOTEM extrapolated characteristic points at 1.96 TeV

- The last step is to predict the *pp* elastic cross sections at the same *t* values as measured by D0 in order to make a direct comparison
- Fit the reference points extrapolated to 1.96 TeV from TOTEM measurements using a double exponential fit ($\chi^2 = 0.63$ per dof): $h(t) = a_1 e^{-b_1|t|^2 c_1|t|} + d_1 e^{-f_1|t|^3 g_1|t|^2 h_1|t|}$
 - This function is chosen for fitting purposes only
 - Low-*t* diffractive cone (1st function) and asymmetric structure of bump/dip (2nd function)
 - The two exponential terms cross around the dip, one rapidly falling and becoming negligible in the high *t*-range where the other term rises off the dip
- Systematic uncertainties evaluated from MC simulation in which the cross section values of the 8 characteristic points are varied within their Gaussian uncertainties. Only fits showing a bump and a dip within the uncertainties in the |t|-locations predicted by extrapolating TOTEM data, and also a slope and intercept at the first characteristic point ($|t| = 0.48 \text{ GeV}^2$) are kept
- Such formula leads also to a good description of TOTEM data in the dip/bump region at 2.76, 7, 8 and 13 TeV

Relative normalization between D0 measurement and extrapolated TOTEM data: total *pp* cross section at 1.96 TeV

- Differences in normalization taken into account by adjusting TOTEM and D0 data sets to have the same cross sections at the optical point $d\sigma/dt(t=0)$ (NB: OP cross sections expected to be equal if there are only C-even exchanges)
- Predict the *pp* total cross section from extrapolated fit to TOTEM data ($\chi^2 = 0.27$)

 $\sigma_{tot} = a_2 \log^2 \sqrt{s} [\text{TeV}] + b_2$

• Leads to an estimate of pp total cross section at 1.96 TeV of σ_{tot} =82.7 \pm 3.1 mb

Relative normalization between D0 measurement and extrapolated TOTEM data: Rescaling TOTEM data

- Adjust 1.96 TeV $d\sigma/dt(t=0)$ from extrapolated TOTEM data to D0 measurement
- From TOTEM $pp \sigma_{tot}$, obtain $d\sigma/dt(t=0)$:

$$\sigma_{tot}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \left(\frac{d\sigma}{dt}\right)_{t=0}$$

- Assuming $\rho = 0.145$, the ratio of the imaginary and the real part of the elastic nuclear amplitude, as taken from COMPETE extrapolation
- This leads to a TOTEM $d\sigma/dt(t=0)$ at the OP of 357.1 \pm 26.4 mb/GeV²
- D0 measured the optical point of $d\sigma/dt$ at small t: 340.8 mb/GeV²
- \bullet TOTEM data rescaled by 0.954 \pm 0.074
- NB: We do not claim that we performed a measurement of $d\sigma/dt$ at the OP at t = 0 (it would require additional measurements closer to t = 0), but we use the two extrapolations simply in order to obtain a common and somewhat arbitrary normalization point

Predictions at $\sqrt{s}=1.96$ TeV

- Reference points at 1.96 TeV (extrapolating TOTEM data) and 1σ uncertainty band
- Comparison with D0 data

Comparison between D0 data and TOTEM extrapolated measurements

- Constrain the scaling between D0 and TOTEM to preserve the measured logarithmic slopes
- χ^2 test to examine the probability for the D0 and TOTEM differential elastic cross sections to agree. The test uses the difference of the integrated cross section in the examined |t|-range with its fully correlated uncertainty, and the experimental and extrapolated points with their covariance matrices
- *p*-value of 0.00061 (6 dof), corresponding to a significance of $3.4\sigma \rightarrow$ Evidence that the colorless *C*-odd three gluon state i.e. the odderon is needed to explain elastic scattering at high energies
- Cross checked using the Kolmogorov Smirnov method
- \bullet Combining with TOTEM ρ measurement will lead to 5.2 to 5.7 σ evidence for odderon

What is the CMS-TOTEM Precision Proton Spectrometer (CT-PPS)?

- Joint CMS and TOTEM project: https://cds.cern.ch/record/1753795
- LHC magnets bend scattered protons out of the beam envelope
- Detect scattered protons a few *mm* from the beam on both sides of CMS: 2016, first data taking (~ 15 fb⁻¹)
- Similar detectors: ATLAS Forward Proton (AFP)

Detecting intact protons in ATLAS/CMS-TOTEM at the LHC

- Tag and measure protons at ±210 m: AFP (ATLAS Forward Proton), CT-PPS (CMS TOTEM - Precision Proton Spectrometer)
- All diffractive cross sections computed using the Forward Physics Monte Carlo (FPMC)
- Complementarity between low and high mass diffraction (high and low cross sections): special runs at low luminosity (no pile up) and standard luminosity runs with pile up

- Momentum fraction of the proton carried by the colourless object (pomeron): $x_p = \xi = \frac{Q^2 + M_X^2}{Q^2 + W^2}$
- Momentum fraction of the pomeron carried by the interacting parton if we assume the colourless object to be made of quarks and gluons: $\beta = \frac{Q^2}{Q^2 + M_X^2} = \frac{x_{Bj}}{x_P}$
- 4-momentum squared transferred:
 t = (p p')²

Reminder: Diffraction at HERA

- Measurement of the diffractive cross section using the rapidity gap selection
- Perform QCD fits using NLO Dokshitzer Gribov Lipatov Altarelli Parisi evolution equation
- At low β : evolution driven by $g \rightarrow q\bar{q}$, at high β , $q \rightarrow qg$ becomes important

$$rac{dF_2^D}{d\log Q^2} \sim rac{lpha_{\mathcal{S}}}{2\pi} \left[P_{qg} \otimes g + P_{qq} \otimes \Sigma
ight]$$

Diffraction at LHC: kinematical variables

- t: 4-momentum transfer squared
- ξ_1, ξ_2 : proton fractional momentum loss (momentum fraction of the proton carried by the pomeron)
- $\beta_{1,2} = x_{Bj,1,2}/\xi_{1,2}$: Bjorken-x of parton inside the pomeron
- $M^2 = s\xi_1\xi_2$: diffractive mass produced
- $\Delta y_{1,2} \sim \Delta \eta \sim \log 1/\xi_{1,2}$: rapidity gap

Hard diffraction at the LHC

- Understanding better the structure of the exchanged colorless object, the Pomeron
- Dijet production: dominated by gg exchanges
- γ +jet production: dominated by qg exchanges
- Jet gap jet in diffraction: Probe proton structure at high gluon densities

Inclusive diffraction at the LHC: sensitivity to gluon density

 Predict DPE dijet cross section at the LHC in PPS acceptance, jets with p_T >20 GeV, reconstructed at particle level using anti-k_T algorithm

- Sensitivity to gluon density in Pomeron especially the gluon density on Pomeron at high β : multiply the gluon density by $(1 \beta)^{\nu}$ with $\nu = -1, ..., 1$
- Measurement possible with 10 pb⁻¹, allows to test if gluon density is similar between different accelerators (HERA and LHC) (universality of Pomeron model)
- Dijet mass fraction: dijet mass divided by total diffractive mass $(\sqrt{\xi_1\xi_2S})$
- C. Marquet, C.R., M. Saimpert, Phys.Rev. D88 (2013) no.7, 074029

- Predict DPE $\gamma+{\rm jet}$ divided by dijet cross section at the LHC
- Sensitivity to universality of Pomeron model
- Sensitivity to quark density in Pomeron, and of assumption: $u = d = s = \overline{u} = \overline{d} = \overline{s}$ used in QCD fits at HERA

Looking for low x resummation effects effects

- Dokshitzer Gribov Lipatov Altarelli Parisi (DGLAP): Evolution in Q^2
- Balitski Fadin Kuraev Lipatov (BFKL): Evolution in x

X :Proton momentum fraction carried away by the interacting quark

Jet gap jet events in diffraction

- Study BFKL dynamics using jet gap jet events in SD, DPE
- See: C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87 (2013) 034010
- See talk by Cristian

Exclusive diffraction

- Many exclusive channels can be studied: jets, χ_C , charmonium, J/Ψ
- Possibility to reconstruct the properties of the object produced exclusively (via photon and gluon exchanges) from the tagged proton
- CMS/TOTEM has the possibility to discover/exclude glueballs at low masses: Check the $f_0(1500)$ or $f_0(1710)$ glueball candidates

Search for $\gamma\gamma WW$, $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous coupling

- Study of the process: $pp \rightarrow ppWW$, $pp \rightarrow ppZZ$, $pp \rightarrow pp\gamma\gamma$
- Standard Model: $\sigma_{WW} = 95.6$ fb, $\sigma_{WW}(W = M_X > 1 TeV) = 5.9$ fb
- Process sensitive to anomalous couplings: $\gamma\gamma WW$, $\gamma\gamma ZZ$, $\gamma\gamma\gamma\gamma\gamma$; motivated by studying in detail the mechanism of electroweak symmetry breaking, predicted by extradim. models
- Rich γγ physics at LHC: see papers by C. Baldenegro, S. Fichet, M. Saimpert, G. Von Gersdorff, E. Chapon, O. Kepka, CR... Phys.Rev. D89 (2014) 114004 ; JHEP 1502 (2015) 165; Phys. Rev. Lett. 116 (2016) no 23, 231801; JHEP 1706 (2017) 142; JHEP 1806 (2018) 131

$\gamma\gamma$ exclusive production: SM contribution

- QCD production dominates at low $m_{\gamma\gamma}$, QED at high $m_{\gamma\gamma}$
- Important to consider W loops at high $m_{\gamma\gamma}$
- At high masses (> 200 GeV), the photon induced processes are dominant
- Conclusion: Two photons and two tagged protons means photon-induced process

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

• Two effective operators at low energies

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

• $\gamma\gamma\gamma\gamma$ couplings can be modified in a model independent way by loops of heavy charged particles $\zeta_1 = \alpha_{em}^2 Q^4 m^{-4} N c_{1,s}$ where the coupling depends only on $Q^4 m^{-4}$ (charge and mass of the charged particle) and on spin, $c_{1,s}$ depends on the spin of the particle This leads to ζ_1 of the order of 10^{-14} - 10^{-13}

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

• Two effective operators at low energies

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

• ζ_1 can also be modified by neutral particles at tree level (extensions of the SM including scalar, pseudo-scalar, and spin-2 resonances that couple to the photon) $\zeta_1 = (f_s m)^{-2} d_{1,s}$ where f_s is the $\gamma \gamma X$ coupling of the new particle to the photon, and $d_{1,s}$ depends on the spin of the particle; for instance, 2 TeV dilatons lead to $\zeta_1 \sim 10^{-13}$

One aside: what is pile up at LHC?

• The LHC machine collides packets of protons

- Due to high number of protons in one packet, there can be more than one interaction between two protons when the two packets collide
- Typically up to 50 pile up events

Soft and hard diffraction and photon exchange processes at the LHC

Search for quartic $\gamma\gamma$ anomalous couplings

- Search for $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Analysis performed at hadron level including detector efficiencies, resolution effects, pile-up...
- Anomalous coupling events appear at high di-photon masses
- S. Fichet, G. von Gersdorff, B. Lenzi, C.R., M. Saimpert ,JHEP 1502 (2015) 165

Search for quartic $\gamma\gamma$ anomalous couplings

 No background after cuts for 300 fb⁻¹: sensitivity up to a few 10⁻¹⁵, better by 2 orders of magnitude with respect to "standard" methods

 Exclusivity cuts using proton tagging needed to suppress backgrounds (Without exclusivity cuts using CT-PPS: background of 80.2 for 300 fb⁻¹)

Search for axion like particles

- Production of ALPs via photon exchanges and tagging the intact protons in the final state complementary to the usual search at the LHC (Z decays into 3 photons): sensitivity at high ALP mass, C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, ArXiv 1803.10835, JHEP 1806 (2018) 131
- Complementarity with Pb Pb running: sensitivity to low mass diphoton, low luminosity but cross section increased by Z⁴

- Production of ALPs via photon exchanges in heavy ion runs: Complementarity to *pp* running
- Sensitivity to low mass ALPs: low luminosity but cross section increased by Z⁴, C. Baldenegro, S. Hassani, C.R., L. Schoeffel, ArXiv:1903.04151
- Similar gain of three orders of magnitude on sensitivity for γγγZ couplings in pp collisions:
 C. Baldenegro, S. Fichet, G. von Gersdorff, C. R., JHEP 1706 (2017) 142

$\gamma\gamma\gamma\gamma Z$ quartic anomalous coupling

- Look for $Z\gamma$ anomalous production
- Z can decay leptonically or hadronically: the fact that we can control the background using the mass/rapidiy matching technique allows us to look in both channels (very small background)
- Leads to a very good sensitivity to $\gamma\gamma\gamma Z$ couplings

$\gamma\gamma\gamma\gamma Z$ quartic anomalous coupling

- C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1706 (2017) 142
- Best expected reach at the LHC by about three orders of magnitude
- Advantage of this method: sensitivity to anomalous couplings in a model independent way: can be due to wide/narrow resonances, loops of new particles as a threshold effect

SM observation and anomalous couplings studies in WW events

 Possible observation of WW exclusive production at high mass: study all decay channels, 2 "fat" jets, 1 lepton + 1 "fat" jet, 2 leptons

- The SM prediction on exclusive events after selection when Ws decay leptonically: 47 events for 300 fb⁻¹ for 2 background events
- 1st possible observation of exclusive *WW* at high mass with data after shutdown with present configuration: important to check detector acceptance, efficiency, alignment...
- Production of *WW* anomalous events: Look in hadronic channel at high mass

Anomalous couplings studies in WW events

- Same method as before: looking for anomalous WW production
- Events appear at high WW mass, and benefit from mass/rapidity matching to reject background
- Sensitivity down to 3.7 10^{-7} GeV⁻² (present limits using exclusive production of WW at medium luminosity (low pile up) without proton tagging led to limits of $\sim 10^{-4}$ GeV⁻²)
- C. Baldenegro, G. Biagi, G. Legras, C.R., arXiv:2009.08331, accepted in JHEP

- Exclusive production of $t\bar{t}$ events: SM observation and sensitivity to anomalous couplings
- $\bullet\,$ SM cross section quite low ${\sim}1~\text{fb}$
- Few events might be observed with 300 fb⁻¹, and higher statistics available at high lumi LHC (3000 fb⁻¹)
- Studies in progress including background with A. Bellora, M. Pitt, C. Baldenegro, S. Fichet, G. von Gersdorff, C.R.

- Discovery of the odderon, the *t*-channel exchange of a colorless *C*-odd gluonic compound by comparing D0 *pp* and TOTEM *pp* elastic data: FERMILAB-PUB-20-568-E; CERN-EP-2020-236 submitted yesterday to PRL!
- Better understanding of pomeron exchange in terms of quark and gluon structure at the LHC: dijets, γ +jet, WW...
- LHC can be seen as a $\gamma\gamma$ collider!
- $\gamma\gamma\gamma\gamma$, $\gamma\gamma ZZ$, $\gamma\gamma WW$, $\gamma\gamma\gamma Z$ anomalous coupling studies and SM observation \rightarrow "Background-free" experiment and any observed event is signal

We need to look everywhere! For instance using intact protons...

Hard diffraction at the LHC: A difficulty to go from HERA to LHC, Survival probablity

- Use parton densities measured at HERA to predict diffractive cross section at the LHC
- Factorisation is not expected to hold: soft gluon exchanges in initial/final states
- Survival probability: Probability that there is no soft additional interaction, that the diffractive event is kept
- Value of survival probability assumed in these studies: 0.1 at Tevatron (measured), 0.03 at LHC (extrapolated)

Soft Colour Interaction models

- A completely different model to explain diffractive events: Soft Colour Interaction (R.Enberg, G.Ingelman, N.Timneanu, hep-ph/0106246)
- Principle: Variation of colour string topologies, giving a unified description of final states for diffractive and non-diffractive events
- No survival probability for SCI models

Inclusive diffraction at the LHC: sensitivity to soft colour interaction

- Predict DPE γ +jet divided by dijet cross section at the LHC for pomeron like and SCI models
- In particular, the diffractive mass distribution (the measurement with lowest systematics) allows to distinguish between the two sets of models: flat distribution for SCI

The Forward Physics Monte Carlo (FPMC)

- FPMC (Forward Physics Monte Carlo): implementation of all diffractive/photon induced processes
- List of processes
 - single diffraction
 - double pomeron exchange
 - central exclusive production
 - photon induced processes (and anomalous couplings)
- Inclusive diffraction: Use of diffractive PDFs measured at HERA, with a survival probability of 0.03 applied for LHC
- FPMC manual (see M. Boonekamp, A. Dechambre, O. Kepka, V. Juranek, C. Royon, R. Staszewski, M. Rangel, ArXiv:1102.2531)
- Output of FPMC generator interfaced with fast simulation of ATLAS/CMS detectors

- Measure the average W charge asymmetry in ξ bins to probe the quark content of the proton: A = (N_{W+} - N_{W-})/(N_{W+} + N_{W-})
- Test if u/d is equal to 0.5, 1 or 2 as an example
- A. Chuinard, C. R.,R. Staszewski, JHEP 1604 (2016) 092