Study of hard color singlet exchange in dijet events with pp collisions at $\sqrt{s} = 13$ TeV

CMS-PAS-SMP-19-006/TOTEM-NOTE-2020-001

Cristian Baldenegro (cbaldenegro@ku.edu) The University of Kansas

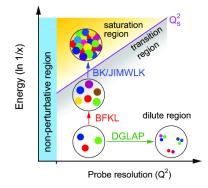
December 8, 2020

Zimányi School Winter Workshop 2020

DE-SC0019389

In fixed-order pQCD, we calculate cross sections in powers of $lpha_s(Q^2)\ll 1$, symbolically represented by

$$\mathrm{d}\hat{\sigma} \sim \alpha_s^2 + \alpha_s^3 + \alpha_s^4 + \dots$$

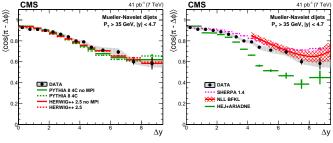

In the high-energy limit ($\hat{s} \gg -\hat{t} \gg \Lambda^2_{QCD}$), the perturbative expansion can be rearranged (symbolically) as,

$$\mathrm{d}\hat{\sigma} \sim \alpha_s^2 \sum_{n=0}^{\infty} \alpha_s^n \ln^n \left(\frac{\hat{s}}{-\hat{t}}\right) + \alpha_s^3 \sum_{n=0}^{\infty} \alpha_s^n \ln^n \left(\frac{\hat{s}}{-\hat{t}}\right) + \alpha_s^4 \sum_{n=0}^{\infty} \alpha_s^n \ln^n \left(\frac{\hat{s}}{-\hat{t}}\right) + \dots$$

where \hat{s} , \hat{t} are the Mandelstam variables at parton-level, and $\alpha_s \ln\left(\frac{\hat{s}}{-\hat{t}}\right) = \alpha_s \Delta y \lesssim 1$. Resummation of large logarithms of energy to all orders in α_s is needed.

The Balitsky–Fadin–Kuraev–Lipatov (BFKL) evolution equation resums large logarithms of energy to all orders in α_s . Resummation known up to next-to-leading-logarithmic (NLL) accuracy.

Proton wavefunction in x and Q^2

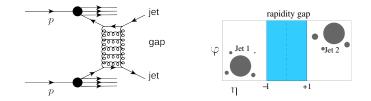

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP): Evolution in Q^2 (resummation of $\alpha_s^r \ln^r(Q^2/Q_0^2)$) \rightarrow Resolving "smaller" partons with larger Q^2 at fixed x_{Bj} .

BFKL: Evolution in x_{Bj} (resummation of $\alpha_s^n \ln^n(1/x_{Bj})$) \rightarrow Larger parton densities at smaller x_{Bj} at fixed Q^2 .

Very important to understand parton densities QCD evolution in (x, Q^2) plane; need as many experimental probes of QCD evolution effects as possible!

Cristian Baldenegro (KU)

Probing BFKL dynamics



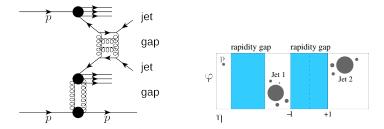
CMS Collaboration, arXiv 1601 06713, JHEP 08 (2016) 139

Examples of standard probes of BFKL dynamics:

- $\Delta \phi$ decorrelations in Mueller-Navelet jets (very forward-backward jets). (Plot above)
- Exclusive vector meson production $(\gamma^* p \rightarrow V p)$ at large $W_{\gamma p}$.
- PDFs at small-x_{Bj} at small momentum transfer.

Generally difficult to isolate BFKL from other higher-order corrections, such as DGLAP evolution. Processes where DGLAP evolution is expected to be suppressed may aid to unambiguously identify BFKL dynamics.

In standard dijet production, net color-flow leads to particle production over wide intervals of rapidity between jets.

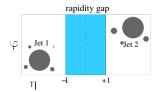

However, in collisions with *t*-channel color singlet exchange between partons, color-flow is neutralized \rightarrow Rapidity interval void of particle production between jets (rapidity gap). The two jets are produced back-to-back, with very little additional jet activity.

In the BFKL limit of QCD, color-singlet exchange corresponds to perturbative pomeron exchange (BFKL two-gluon ladder exchange). Jet-gap-jet process was first proposed by A. Mueller and W-K. Tang (Phys. Lett. B284,123 (1992)) as a probe of BFKL evolution.

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) dynamics are strongly suppressed in events with pseudorapidity gaps (Sudakov form factor to suppress radiation in gap).

Although there is a short-distance physics mechanism for gap formation, soft-parton activity can destroy the central gap. This is parametrized by means of the gap survival probability, $|S|^2$, which reduces the visible cross section of jet-gap-jet events. Difficult to understand theoretically.

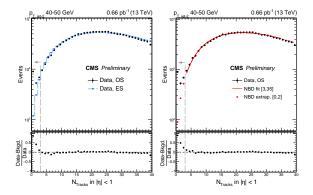
In pp collisions with intact protons, soft-parton activity is largely reduced \rightarrow Central gap more likely to "survive" (Marquet, Royon, Trzebiński, Žlebčík, Phys.Rev. D 87, 034010 (2013)).



Addressed in study with CMS-TOTEM combined analysis. First time a proton-gap-jet-gap-jet topology is studied!.

Jet-gap-jet @ 13 TeV study by CMS and TOTEM (CMS-PAS-SMP-19-006)

Analysis based on 13 TeV low-luminosity, high- β^* pp collision data collected in 2015 (pileup of 0.05-0.10). Event selection:


- Particle-flow anti- k_t jets with R = 0.4.
- Two leading jets have $p_T > 40$ GeV each.
- \blacksquare Leading jets satisfy $1.4 < |\eta_{\rm jet}| < 4.7$ and $\eta_{\rm jet-1} \times \eta_{\rm jet-2} < 0$
 - \rightarrow Favors *t*-channel color singlet exchange.
- At most one reconstructed primary vertex to suppress residual pileup contributions.

Pseudorapidity gap is defined by means of the charged particle multiplicity N_{tracks} between the leading two jets. Each charged particle has $p_T > 200$ MeV in $|\eta| < 1$.

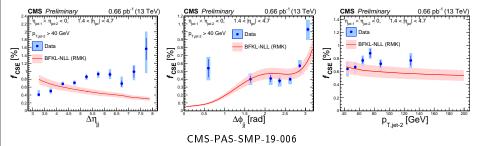
Pseudorapidity gap corresponds to absence of charged particle tracks between jets.

Multiplicity of charged particles between jets (CMS-PAS-SMP-19-006)

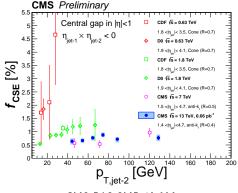
Color-exchange dijet events dominate at high-multiplicities \rightarrow Use as control region to estimate fluctuations at low multiplicities. Two data-based approaches:

• Orthogonal data sample (left): two jets on equal sides (ES) of the CMS detector, $\eta_{jet-1} \times \eta_{jet-2} > 0$. Normalize to events with jets in opposite sides (OS) of CMS, $\eta_{jet-1} \times \eta_{jet-2} < 0$, in $3 < N_{Tracks} < 40$.

- Negative binomial distribution (NBD) function (right): Fit data with NBD in
 - $3 \le N_{\text{Tracks}} \le 35$, extrapolate down to $N_{\text{Tracks}} = 0$. (Baseline method)

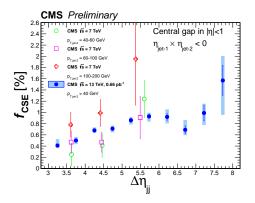

We the fraction f_{CSE} based on the charged particle multiplicity distribution between the jets:

$$f_{CSE} \equiv \frac{N(N_{tracks} < 3) - N_{bkg}(N_{tracks} < 3)}{N_{a|l}} \equiv \frac{\text{color singlet exchange dijet events}}{a|l \text{ dijet events}}$$

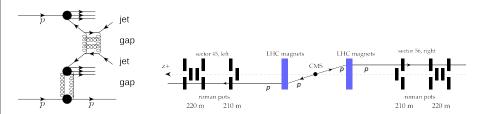

The fraction f_{CSE} is measured as a function of:

- Pseudorapidity difference between the jets, $\Delta \eta_{jj} \equiv |\eta_{jet-1} \eta_{jet-2}|$. Sensitive to expected BFKL dynamics, since it's related to resummation of large logs of *s*.
- Subleading jet transverse momentum, p_{T, jet-2}. Sensitive to expected BFKL dynamics.
- Azimuthal angle difference between the leading jets, $\Delta \phi_{jj} \equiv |\phi_{jet-1} \phi_{jet-2}|$. Sensitive to deviations of 2 \rightarrow 2 scattering topology.

Results on color-singlet exchange fraction f_{CSE}


- Bars represent stat uncertainties, boxes represent stat + syst uncertainties.
- $f_{CSE} = 0.5-1.0\%$. f_{CSE} increases with $\Delta \eta_{jj}$, with $\Delta \phi_{jj} \approx \pi$, and is weakly dependent on $\rho_{T, jet-2}$.
- Comparisons with Royon, Marquet, Kepka (RMK) predictions based on BFKL NLL calculations + LO impact factors (Phys. Rev. D 83.034036), and $|S|^2 = 0.1$.
- Challenging to describe theoretically all aspects of the measurement simultaneously.

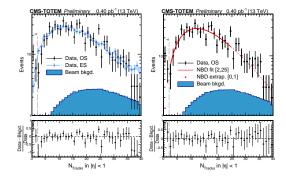
CMS-PAS-SMP-19-006


- Jet-gap-jet events at four different energies in $p\bar{p}$ and pp collisions at 0.63 TeV, 1.8 TeV, 7 TeV, and 13 TeV (this measurement).
- Generally, gap survival probability $|S|^2$ is expected to decrease with increasing \sqrt{s} , due to an increase in spectator parton activity with \sqrt{s} .
- Within the uncertainties, f_{CSE} stop decreasing with \sqrt{s} at LHC energies, in contrast to trend observed at lower energies 0.63 TeV \rightarrow 1.8 TeV \rightarrow 7 TeV.

Cristian Baldenegro (KU)

- 7 TeV analysis performed in three bins of $p_{T,jet-2}$ and three bins of $\Delta \eta_{jj} = 3-4, 4-5,5-7$ (EP JC78(2018)242)
- Trend of increasing $f_{\rm CSE}$ with $\Delta \eta_{\rm jj}$ is confirmed with present 13 TeV results with improved precision.
- New results reach previously unexplored values of $\Delta \eta_{jj} \rightarrow$ Very important to understand hard color singlet exchange.

Turning to study with leading protons (CMS-TOTEM)

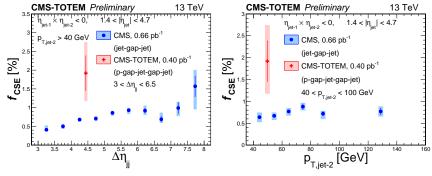

Based on a subsample of events that have leading protons detected with TOTEM roman pots.

Same dijet event selection + central gap definition as before.

Intact proton selection:

- Proton fractional momentum loss is $\xi_p(\text{RP}) < 0.2$ and four-momentum transfer square is $-4 < t < -0.025 \text{ GeV}^2$.
- To suppress beam background, we cut on $\xi_p(PF) \xi_p(RP) < 0$, where $\xi_p(PF) = \frac{\sum_i E_i \pm p_{x,i}}{\sqrt{s}}$ is reconstructed with particle-flow candidates of CMS. The \pm is the sign of the leading proton η .

Charged particle multiplicity between jets + leading proton


Solid histogram represents beam-bkg + dijet production.

Similar techniques to estimate background from fluctuations in particle multiplicity:

- Orthogonal dijet sample approach (left): Two jets in same side w.r.t. fixed η region. Interval needs to be adjusted to account for boosts in SD dijet events (0.8 units in η).
- **NBD** approach (right): NBD is fit in $2 < N_{\text{Tracks}} < 25$, and extrapolated down to $N_{\text{Tracks}} = 0$. Different fit range accounts for lower mean N_{Tracks} in events with intact protons.

Both approaches lead to an excess of events at low charged particle multiplicities \rightarrow For the first time these events are studied!

Results on p-gap-jet-gap-jet

CMS-PAS-SMP-19-006

 f_{CSE} fraction in p-gap-jet-gap-jet study is 2.91 ± 0.70 (stat) $^{+1.02}_{-0.94}$ (syst) times larger than jet-gap-jet fraction, for similar dijet kinematics.

Abundance of events with a central gap is larger in events with leading protons.

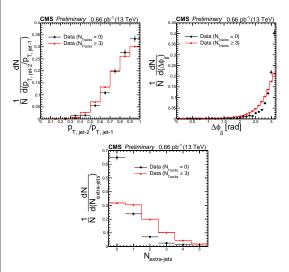
Lower spectator parton activity in events with intact protons \rightarrow Better chance of central gap surviving the collision.

Cristian Baldenegro (KU)

Summary

Unique opportunity to study hard color singlet exchange at the CERN LHC. **Observation of jet-gap-jet events at 13 TeV**:

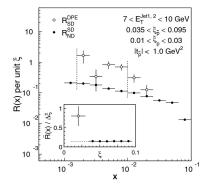
- About 0.5% of dijet events are produced by hard color singlet exchange.
- No further suppression between 7 and 13 TeV results is observed.
- NLL BFKL calculation is not able to describe all aspects of the measurement simultaneously.


Jet-gap-jet events with intact protons:

- First observation of this process experimentally.
- Hard color singlet exchange fraction f_{CSE} is $2.91 \pm 0.70(\text{stat})^{\pm 1.01}_{-0.94}$ larger than that in standard jet-gap-jet events.
- Corresponding paper will be submitted for publication soon.

Thanks!

DE-SC0019389


Normalized distributions in:

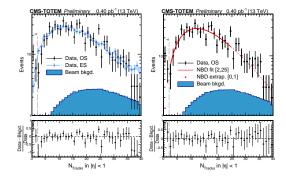
- $\blacksquare p_{T,jet-2}/p_{T,jet-1}$
- $\bullet \Delta \phi_{jj} = |\phi_{jet-1} \phi_{jet-2}|$
- Jet multiplicity N_{extra-jets} for jets with p_{T,extra-jet} > 15 GeV.

Jet-gap-jet candidates with $N_{\text{Tracks}} = 0$ and events dominated by color-exchange dijet events with $N_{\text{Tracks}} \ge 3$.

Distributions reflect underlying quasielastic parton-parton scattering process topology.

Consistent with other two-rapidity gap topology

CDF studied double-pomeron exchange/single-diffractive dijet event ratios, compared them to single-diffractive/non-diffractive (**PRL85,4215**):

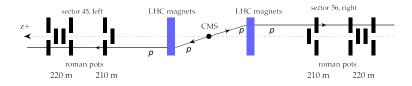

 $\mathcal{R} = (\text{DPE/SD}) / (\text{SD/ND}) = 5.3 \pm 1.9$, different from factor of 1 expected from factorization. Comparison of gap-jet-jet-gap/gap-jet-jet topology.

Present CMS-TOTEM result finds a similar effect for a different two-gap topology (proton-gap-jet-gap-jet).

Source	Jet-gap-jet			Proton-gap-jet-gap-jet
	$\Delta \eta_{ m jj}$	$p_{\rm T, jet-2}$	$\Delta \phi_{ m jj}$	1 10ton-gap-jet-gap-jet
Jet energy scale	1.0 - 5.0	1.5 - 6.0	0.5 - 3.0	0.7
Track quality criteria	6.0-8.0	5.4 - 8.0	1.5 - 8.0	8
Charged particle $p_{\rm T}$ threshold	2.0 - 5.8	1.6 - 4.0	1.1 - 5.8	11
Background subtraction method	4.7 - 14.6	2 - 14.6	12.0	28.3
NBD fit parameter	0.8-2.6	0.6 - 1.7	0.1 - 0.6	7
NBD fit interval	_	_	_	12.0
Calorimeter energy scale	_	_	_	5.0
Horizontal dispersion	_	_	_	6.0
Fiducial selection requirements		_	_	2.6
Total	6.8–22.0	8.3–14.9	12.0–17.1	33.4

Relative systematic uncertainties in percentage on f_{CSE} . Uncertainty range is representative of the variation found in the jet-gap-jet fraction in bins of the kinematic variables of interest.

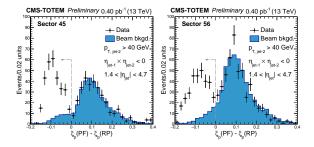
Charged particle multiplicity between jets + leading proton



Solid histogram represents beam-bkg + dijet production.

Similar techniques to estimate background from fluctuations in particle multiplicity:

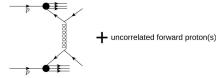
- Orthogonal dijet sample approach (left): Two jets in same side w.r.t. fixed η region. Interval needs to be adjusted to account for boosts in SD dijet events (0.8 units in η).
- **NBD** approach (right): NBD is fit in $2 < N_{\text{Tracks}} < 25$, and extrapolated down to $N_{\text{Tracks}} = 0$. Different fit range accounts for lower mean N_{Tracks} in events with intact protons.


Both approaches lead to an excess of events at low charged particle multiplicities \rightarrow For the first time these events are studied!

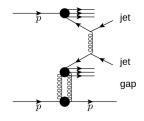
- At least one proton on either side.
- Track-impact point cuts (x, y) based on acceptance studies. For vertical RPs, 0 < x < 20mm and 8 < |y| < 30mm, for horizontal RPs, 7 < x < 25mm and |y| < 25mm.
- Proton fractional momentum loss is $\xi_p(\text{RP}) < 0.2$ and four-momentum transfer square is $0.025 t < 4 \text{ GeV}^2$. Based on acceptance studies + validity of optical functions.
- To suppress beam bkg contribution (pileup+beam halo), additional cut $\xi_p(PF) \xi_p(RP) < 0$, where $\xi_p(PF) = \frac{\sum_i E_i \pm p_x, i}{\sqrt{s}}$ is the proton fractional momentum loss reconstructed with PF candidates of CMS. The \pm is the sign of the leading proton η .

A total of 336 and 341 events in sector 45 and sector 56, respectively, satisfy the above selection requirements + dijet selection requirements.

Beam background


Estimated with event-mixing: inclusive dijet events paired with protons in zero-bias sample.

Requirement $\xi_p(PF) - \xi_p(RP) < 0$ indicated by dashed line. Region $\xi_p(PF) - \xi_p(RP) > 0$ is dominated by beam bkg contributions \rightarrow Used as control region to estimate residual beam bkg in $\xi_p(PF) - \xi_p(RP) < 0$.


Beam background contributes 13.6% and 15.2% for protons in sector 45 and 56 in $\xi_p(PF) - \xi_p(RP) < 0$, respectively. Consistent with results in FSQ-12-033.

Background contributions to p-gap-jet-gap-jet events

Inclusive dijet production + uncorrelated proton from residual pileup or beam halo activity (estimade from data). Standard diffractive dijet production with no central gap (p-gap-jet-jet topology):

 \rightarrow Fluctuations on particle multiplicity can lead to gaps. Needs to be subtracted (NBD and ES methods).

