Phase diagram and dualities in two color QCD

Roman N. Zhokhov IZMIRAN, IHEP

20th ZIMÁNYI SCHOOL Winter Workshop on Heavy Ion Physics December 7-11, 2020, Budapest, Hungary

Russian Science Foundation

J. E.: From darkness, the light

Б А 3 И С

Фонд развития
теоретической физики

и математики

K.G. Klimenko, IHEP T.G. Khunjua, University of Georgia, MSU

in the broad sense our group stems from Department of Theoretical Physics, Moscow State University Prof. V. Ch. Zhukovsky

details can be found in

Eur.Phys.J.C 80 (2020) 10, 995 arXiv:2005.05488 [hep-ph]

JHEP 06 (2020) 148 arXiv:2003.10562 [hep-ph]

Phys.Rev. D100 (2019) no.3, 034009 arXiv: 1904.07151 [hep-ph]

JHEP 1906 (2019) 006 arXiv:1901.02855 [hep-ph]

Eur.Phys.J. C79 (2019) no.2, 151, arXiv:1812.00772 [hep-ph],

Phys.Rev. D98 (2018) no.5, 054030 arXiv:1804.01014 [hep-ph],

Phys.Rev. D97 (2018) no.5, 054036 arXiv:1710.09706 [hep-ph]

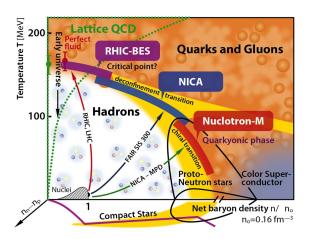
Phys.Rev. D95 (2017) no.10, 105010 arXiv:1704.01477 [hep-ph]

The work is supported by

➤ Russian Science Foundation (RSF) under grant number 19-72-00077

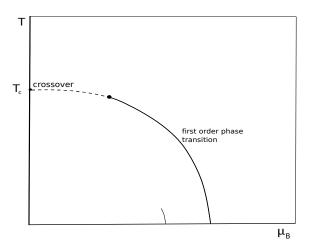
► Foundation for the Advancement of Theoretical Physics and Mathematics

Фонд развития теоретической физики и математики



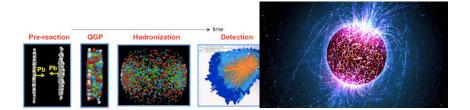
Two main phase transitions

- ► confinement-deconfinement
- ► chiral symmetry breaking phase—chriral symmetric phase

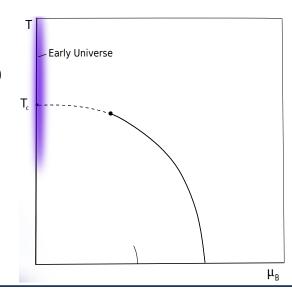


Two main phase transitions

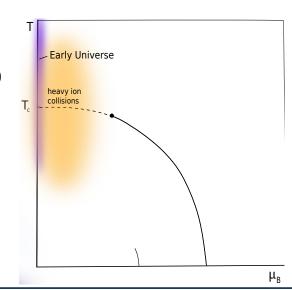
- ► confinement-deconfinement
- chiral symmetry breaking phase—chriral symmetric phase



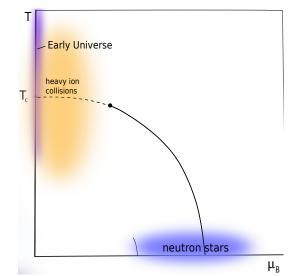
► Early Universe



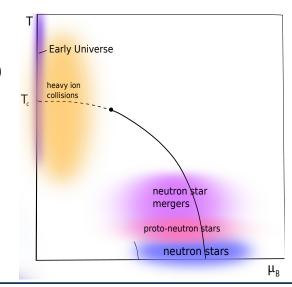
- ► Early Universe
- ▶ heavy ion collisions



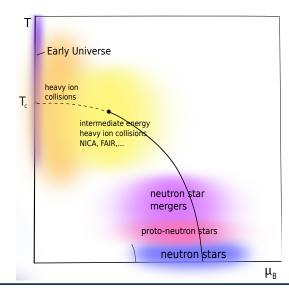
- ► Early Universe
- ▶ heavy ion collisions

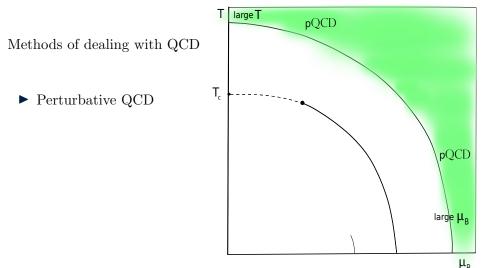


- ► Early Universe
- ▶ heavy ion collisions
- ► neutron stars
- ▶ proto- neutron stars
- ► neutron star mergers



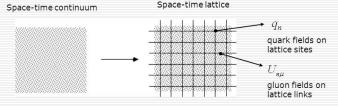
- ► Early Universe
- ▶ heavy ion collisions
- neutron stars
- ▶ proto- neutron stars
- ► neutron star mergers





QCD on a space-time lattice

K. G. Wilson 1974



- Feynman path integral
 - $\qquad \text{Action} \quad \mathcal{S}_{\textit{QCD}} = \frac{1}{g_s^2} \sum_{\textit{P}} tr(UUUU) + \sum_{\textit{f}} \overline{q}_{\textit{f}} \big(\gamma \cdot U + m_{\textit{f}} \, \big) q_{\textit{f}}$
 - Physical quantities as integral averages

$$\langle O(U, \overline{q}, q) \rangle = \frac{1}{Z} \int \prod_{n\mu} dU_{n\mu} \prod_{n} d\overline{q}_{n} dq_{n} O(U, (U, \overline{q}, q)) e^{-S_{QCD}}$$

lattice QCD at non-zero baryon chemical potential $\mu_{B^{14}}$

$$Z = \int D[gluons] D[guarks] e^{-N_{aCD}^{E}}$$

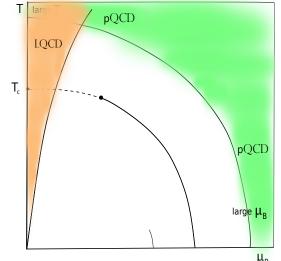
$$Z = \int D[gluons] Det D(u) e^{-N_{gluons}^{E}}$$

It is well known that at non-zero baryon chemical potential μ_B lattice simulation is quite challenging due to the sign problem complex determinant

$$(Det(D(\mu)))^{\dagger} = Det(D(-\mu^{\dagger}))$$

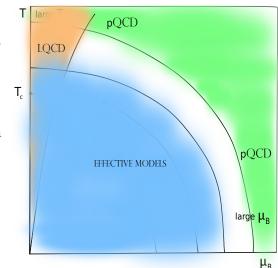
Methods of dealing with QCD

- ▶ Perturbative QCD
- ► First principle calculation
 - lattice QCD



Methods of dealing with QCD $\,$

- ► Perturbative QCD
- ► First principle calculation
 lattice QCD
- ► Effective models
- ► DSE, FRG
- **....**



Nambu-Jona-Lasinio model

$$\mathcal{L} = \bar{q}\gamma^{\nu}i\partial_{\nu}q + \frac{G}{N_c} \left[(\bar{q}q)^2 + (\bar{q}i\gamma^5 q)^2 \right]$$
$$q \to e^{i\gamma_5 \alpha} q$$

continuous symmetry

$$\widetilde{\mathcal{L}} = \bar{q} \left[\gamma^{\rho} i \partial_{\rho} - \sigma - i \gamma^{5} \pi \right] q - \frac{N_{c}}{4G} \left[\sigma^{2} + \pi^{2} \right].$$

Chiral symmetry breaking

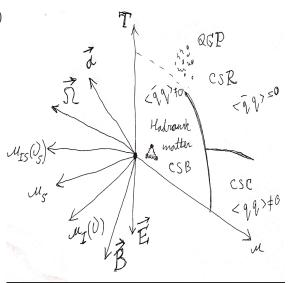
 $1/N_c$ expansion, leading order

$$\langle \bar q q \rangle \neq 0$$

$$\langle \sigma \rangle \neq 0 \longrightarrow \widetilde{\mathcal{L}} = \bar{q} \Big[\gamma^{\rho} i \partial_{\rho} - \langle \sigma \rangle \Big] q$$

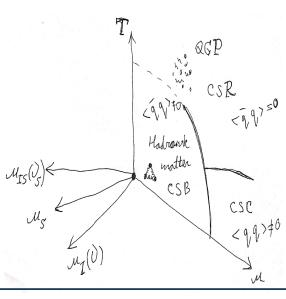
More than just QCD at (μ, T)

- more chemical potentials μ_i
- ► magnetic fields
- ightharpoonup rotation of the system $\vec{\Omega}$
- ightharpoonup acceleration \vec{a}
- ► finite size effects (finite volume and boundary conditions)



More than just QCD at (μ, T)

- ▶ more chemical potentials μ_i
- ► magnetic fields
- ► rotation of the system
- ▶ acceleration
- ► finite size effects (finite volume and boundary conditions)



Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Isotopic chemical potential μ_I

Allow to consider systems with isospin imbalance $(n_n \neq n_p)$.

$$\frac{\mu_I}{2}\bar{q}\gamma^0\tau_3q = \nu\left(\bar{q}\gamma^0\tau_3q\right)$$

$$n_I = n_u - n_d \iff \mu_I = \mu_u - \mu_d$$

chiral (axial) chemical potential

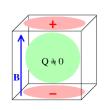
Allow to consider systems with chiral imbalance (difference between densities of left-handed and right-handed quarks).

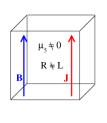
$$n_5 = n_R - n_L \quad \longleftrightarrow \quad \mu_5 = \mu_R - \mu_L$$

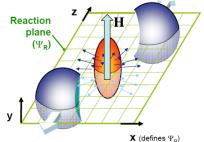
The corresponding term in the Lagrangian is

$$\mu_5 \bar{q} \gamma^0 \gamma^5 q$$

see talk of Soeren Schlichting and Roy Lacey



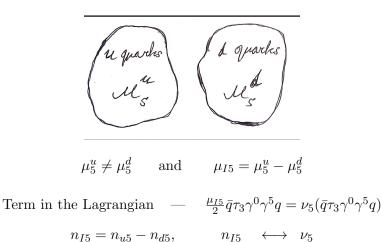




$$\vec{J} \sim \mu_5 \vec{B}$$
,

see talk of Soeren Schlichting and Roy Lacey

- A. Vilenkin, PhysRevD.22.3080,
- K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78 (2008) 074033

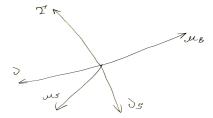


 $\mu_B \neq 0$ impossible on lattice due to the **sign problem**

- ▶ QCD at non-zero μ_5 no sign problem: (μ_5, T) (V. Braguta, A. Kotov et al, ITEP lattice group)
- ▶ QCD at non-zero μ_I no sign problem: (μ_I, T) (G. Endrodi, B. Brandt et al, Emmy Noether junior research group, Goethe-University Frankfurt, Institute for Theoretical Physics ()

Different chemical potentials and matter content

$$\mu = \frac{\mu_B}{3}, \quad \nu = \frac{\mu_I}{2}, \quad \mu_5, \quad \nu_5 = \frac{\mu_{I5}}{2}$$



Dualities 26

Dualities

It is not related to holography or gauge/gravity duality

it is the dualities of the phase structures of different systems

Auxiliary fields

$$\sigma(x) = -2\frac{G}{N_c}(\bar{q}q); \quad \pi_a(x) = -2\frac{G}{N_c}(\bar{q}i\gamma^5\tau_a q).$$

Condansates ansatz $\langle \sigma(x) \rangle$ and $\langle \pi_a(x) \rangle$ do not depend on spacetime coordinates

$$\langle \sigma(x) \rangle = M, \quad \langle \pi_1(x) \rangle = \pi, \quad \langle \pi_2(x) \rangle = 0, \quad \langle \pi_3(x) \rangle = 0.$$

$$M = \langle \sigma(x) \rangle \sim \langle \bar{q}q \rangle,$$
 CSB phase: $M \neq 0$,

$$\pi_1 = \langle \pi_1(x) \rangle = \langle \bar{q}\gamma^5 \tau_1 q \rangle,$$
 PC phase: $\pi_1 \neq 0,$

The TDP

$$\Omega(T, \mu, \mu_i, ..., \langle \bar{q}q \rangle, ...)$$

$$\Omega(T, \mu, \mu_i, ..., \langle \bar{q}q \rangle, ...) \qquad \Omega(T, \mu, \nu, \nu_5, ..., M, \pi, ...)$$

The TDP

$$\Omega(T,\mu,\mu_i,...,\langle\bar{q}q\rangle,...) \qquad \qquad \Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$$

The TDP (phase daigram) is invariant under Interchange of - condensates - matter content

$$\Omega(M, \pi, \nu, \nu_5)$$

$$M \longleftrightarrow \pi, \qquad \nu \longleftrightarrow \nu_5$$

$$\Omega(M,\pi,\nu,\nu_5) = \Omega(\pi,M,\nu_5,\nu)$$

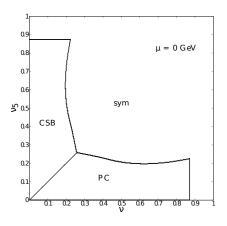


Figure: NJL model results

$$\Omega(M, \pi, \nu, \nu_5) = \Omega(\pi, M, \nu_5, \nu)$$

$$\mathcal{D}: M \longleftrightarrow \pi, \quad \nu \longleftrightarrow \nu_5$$

Duality between chiral symmetry breaking and pion condensation

$$PC \longleftrightarrow CSB \quad \nu \longleftrightarrow \nu_5$$

Duality 3

Duality was found in

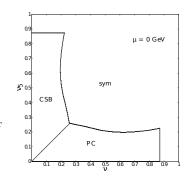
- ► In the framework of effective model, namely NJL model
- ▶ In the leading order of large N_c approximation or in mean field

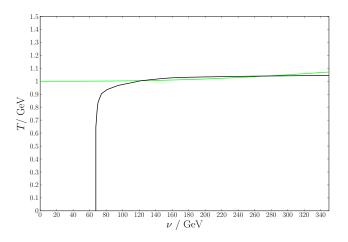
Dualities on the lattice

 $(\mu_B,\mu_I,\mu_{I5},\mu_5)$

 $\mu_B \neq 0$ impossible on lattice but if $\mu_B = 0$

- ▶ QCD at μ_5 (μ_5, T)
 - V. Braguta, A. Kotov et al, ITEP lattice group
- ▶ **QCD** at μ_I (μ_I, T)
 - G. Endrodi, B. Brandt et al, Emmy Noether junior research group, Goethe-University Frankfurt, Institute for Theoretical Physics ()





 T_c^M as a function of μ_5 (green line) and $T_c^{\pi}(\nu)$ (black)

Uses of Dualities

How (if at all) it can be used

Let us discuss only Inhomogeneous phases (case)

discussed in Particles 2020, 3(1), 62-79

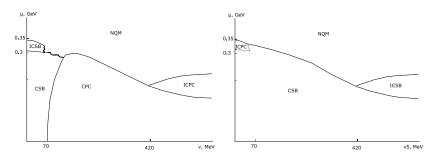


Figure: (ν, μ) -phase diagram.

M. Buballa, S. Carignano, J. Wambach, D.

Nowakovski, Lianyi He et al.

Figure: (ν_5, μ) -phase diagram

Two colour QCD case $\mathbf{QC}_2\mathbf{D}$

There are a lot similarities:

▶ similar phase transitions:

confinement/deconfinement, chiral symmetry breaking/restoration at large T and μ

► A lot of physical quantities coincide up to few dozens percent

Critical temperature $T_c/\sqrt{\sigma}$, topological susceptibility $\chi^{\frac{1}{4}}/\sqrt{\sigma}$ shear viscosity η/s

There are no sign problem in SU(2) case

$$(Det(D(\mu)))^{\dagger} = Det(D(\mu))$$

and lattice simulations at non-zero baryon density are possible

It is a great playground for studying dense matter

Instead of chiral symmetry

$$SU_L(2) \times SU_R(2)$$

one has Pauli-Gursey flavor symmetry

Two colour NJL model

$$L = \bar{q} \Big[i\hat{\partial} - m_0 \Big] q + H \Big[(\bar{q}q)^2 + (\bar{q}i\gamma^5 \vec{\tau}q)^2 + (\bar{q}i\gamma^5 \sigma_2 \tau_2 q^c) (\bar{q}^c i\gamma^5 \sigma_2 \tau_2 q) \Big]$$

Condensates and phases

$$M = \langle \sigma(x) \rangle \sim \langle \bar{q}q \rangle,$$

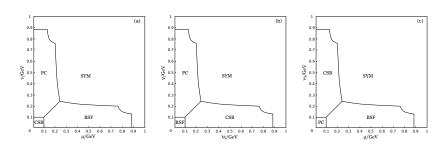
CSB phase:
$$M \neq 0$$
,

$$\pi_1 = \langle \pi_1(x) \rangle = \langle \bar{q} \gamma^5 \tau_1 q \rangle,$$

PC phase:
$$\pi_1 \neq 0$$
,

$$\Delta = \langle \Delta(x) \rangle = \langle qq \rangle = \langle q^T C \gamma^5 \sigma_2 \tau_2 q \rangle,$$

BSF phase: $\Delta \neq 0$.



J. Andersen, T. Brauner, D. T. Son, M. Stephanov, J. Kogut, ...

 $PC \longleftrightarrow BSF$

(b)
$$\mathcal{D}_3: \quad \nu \longleftrightarrow \nu_5, \quad M \longleftrightarrow \pi_1, \quad \text{PC} \longleftrightarrow \text{CSB}$$

(a) $\mathcal{D}_1: \quad \mu \longleftrightarrow \nu, \quad \pi_1 \longleftrightarrow |\Delta|,$

(c)
$$\mathcal{D}_2: \quad \mu \longleftrightarrow \nu_5, \quad M \longleftrightarrow |\Delta|, \quad \text{CSB} \longleftrightarrow \text{BSF}$$

Dualities \mathcal{D}_1 , \mathcal{D}_2 and \mathcal{D}_3 were found in

- In the framework of NJL model

- In the mean field approximation

Dualities are connected with Pauli-Gursey group

Dualities were found in

- In the framework of NJL model beyond mean field

- In QC_2D non-pertubartively (at the level of Lagrangian)

Duality \mathcal{D} is a remnant of chiral symmetry

Duality was found in

- ▶ In the framework of NJL model beyond mean field or at all orders of N_c approximation
- ► In QCD non-pertubartively (at the level of Lagrangian)

- $(\mu_B, \mu_I, \nu_5, \mu_5)$ phase diagram was studied in two color color case
- ► It was shown that there exist dualities in QCD and QC₂D

 Richer structure of Dualities in the two colour case
- ► There have been shown ideas how dualities can be used

 Duality is not just entertaining mathematical property but
 an instrument with very high predictivity power
- ▶ Dualities have been shown non-perturbetively in the two colour case
- ▶ Duality has been shown non-perturbarively in QCD