UNIVERSITÄT BIELEFELD

Exploring 3D structure of Glasma

20th Zimányi School Winter Workshop on Heavy Ion Physics

Budapest, Hungary (Virtually)

9 December 2020

Pragya Singh, Sören Schlichting Universität Bielefeld

Based on S. Schlichting, P. Singh arxiv2010.11172

Motivation

 Space time dynamics dominated by hydrodynamics expansion which requires macroscopic properties of initial state as an input.

•Boost invariance is a good "approximation" that have been exhaustively studied.

• New measurements at RHIC and LHC indicates towards the presence of longitudinal dynamics

•Available 3+1D models:

Generalisation of 2+1D CGC model arXiv:1605.07158 arXiv:2001.08636, ... Phenomenological model arXiv:1506.02817 arXiv:1509.04103, ... 3D CGC (Coloured particle in cell method) arXiv:1605.07184

The effective theory

- Earliest stage of collision is described well using Color glass condensate, an effective theory.
 [McLerran, Venugopalan PRD49 (1994) 2233-2241, Kovner, McLerran, Weigert D52 (1995) 6231-6237]
- Separation of scale at very high energies Hard constituents Soft gluons
- Hard partons acts as a random static source for soft gluons.
- Initial energy deposition can be obtained by solving classical Yang-Mills equation.

2+1D Vs 3+1D

"Boost-invariant collision"

"Realistic collision"

- Collisional overlap region becomes extended in t,z
- No longer have access to analytical solutions for initial conditions in the forward light-cone

Solve 3+1D classical Yang-Mills equations & evolution equations for eikonal currents, before, during and after the collision

- 1. Sample 3D distribution of color charges $\rho(x^{\pm}, x_{\perp})$ in each half boxes.
- 2. Solve for Weizsäcker-Williams fields (WW) of the incoming nuclei.
- 3. Evolve gauge fields and corresponding conjugate momenta according to the discretised 3+1D YM

 $[D_{\mu},F^{\mu\nu}]=J^{\nu}$

4. Evolve eikonal currents according to continuity equation.

 $[D_{\mu},J^{\mu}]=0$

5. Solve 3. and 4. simultaneously to simulate early time dynamics of collision in 3+1D

Glasma in 3+1D

Before addressing full complexity of colliding nuclei, consider a simple extension of McLerran-Venugopalan model

$$\langle \rho^a(x^+, x_\perp) \rangle = 0$$

$$\langle \rho^a(x^+, x_\perp) \rho^b(y^+, y_\perp) \rangle = \delta^{ab} Q_s^2 \delta^2(x_\perp - y_\perp) f_\sigma(\frac{x^+ + y^+}{2})$$

- nuclei are transverse homogenous
- no fluctuations of longitudinal distribution of color charges, except for average Gaussian profile

 $f_{\sigma}(x^+) \sim \exp(-(x^+/R)^2)$

Single scale Q_s controlling energy deposition, and dimensionless parameter Q_sR controlling thickness of Lorentz contracted nuclei

Toy Model Charges

Evolution of glasma fields before and after the collision.

$$E_{Glasma}^{2}(t,z) = E^{2}(t,z) - E_{WW}^{2}(t,z)$$

3D Glasma

Exploring the full space-time dynamics

 $Q_{s}R = 1/2$

Sensible space-time profiles for transverse pressure, but surprisingly large energy density near the light-cones

Pragya Singh

3D Glasma

- Observable highly sensitive to the choice of origin.
- Use local energy rest frame.

$$\epsilon_{LRF} = \frac{1}{2} \left(T^{00} - T^{zz} + \sqrt{\left(T^{00} + T^{zz}\right)^2 - 4T^{0z}T^{0z}} \right)$$

- Limited rapidity window.
- Breaking boost invariance with increasing thickness

Collision with (semi-) realistic charge distribution

 Model of three dimensional structure of the color charge distribution based on small-x transverse momentum distribution (TMDs).

$$\left\langle \rho^{a}(x)\rho^{b}(y)\right\rangle = \delta^{ab}T\left(\frac{x+y}{2}\right)\Gamma(x-y)$$

- $\tilde{\Gamma}(x y)$ describes the momentum dependence of color charge inside the nucleus. Parametrised by TMDs.
- $T\left(\frac{x+y}{2}\right)$ tells about the spatial structure. Obtained using Monte Carlo Glauber model.

Effect of fluctuation at RHIC energies

 $Q_{S}a_{\perp} = 0.33$ Au-Au collision at $\sqrt{s} = 200~{\rm GeV}$

Pragya Singh

3D Glasma

Effect of fluctuation at RHIC energies

Fixed $\tau \simeq 0.75$ fm/c

Fluctuation relatively small $\leq 1\%$ and decreases with increasing \sqrt{s}

Pragy	12	ın	$\mathbf{\alpha}$	r
I I au	/a		u	
- 3,			\mathbf{J}	

Characterising transverse geometry

- Developed a framework to perform 3+1D simulation based on CGC.
- Significant violation of boost invariance for finite thickness.
- Physical model which includes the spatial structure and fluctuations of the colliding nuclei.

Future Plans

- Include physical SU(3) gauge group to compare against experiments.
- Reduce the computational cost and explore larger rapidity window.
- Collision at LHC energies.

Stable Propagation of color charges

Numerical dispersion of current is small

Boost-invariant high energy limit

Based on Color Glass Condensate description of high-energy QCD, colliding nuclei are described as infinitely thin sheets of static color charges

Before the collision

Creation of boost invariant transverse chromo-electric and chromo-magnetic fields

Immediately after collision

$$E_x^{\eta} = -ig\delta^{ij}[\alpha_x^i, \beta_x^j]$$

$$B_x^{\eta} = -ig\epsilon^{ij}[\alpha_x^i, \beta_x^j]$$

Subsequent evolution studied numerically using 2+1D classical Yang-Mills simulations

Pragya Singh

Field Strengths

Magnetic Field Strength

Thick Nucleus

Pragya Singh

3D Glasma

09.12.2020

Rapidity profile

Transverse Pressure

Longitudinal Pressure in LRF

Pragya Singh

Effect of fluctuation at RHIC energies

- Au-Au collision at $\sqrt{s} = 130 \text{ GeV}$
- Fixed $\tau\simeq 0.4$ fm/c
- Flux tubes of varying lengths.
- Limited rapidity window

```
\eta \in [-0.8,\!0.8]
```

0.3

 $P_T \left[GeV^4
ight]$

Exploring the full space-time dynamics

