ZIMÁNYI SCHOOL 2020

20th ZIMÁNYI SCHOOL
WINTER WORKSHOP
ON HEAVY ION PHYSICS

December 7-11, 2020

Budapest, Hungary

József Zimányi (1931 - 2006

Study of Uranium nuclei deformation via flow-mean transverse momentum correlation at STAR

Chunjian Zhang

(For the STAR Collaboration)

December 9, 2020

Supported in part by

Shape-flow transmutation

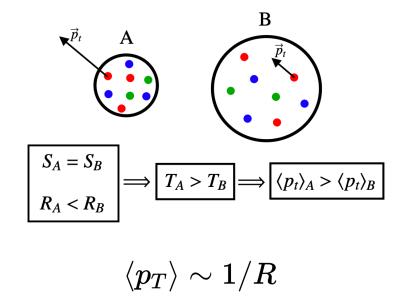
Smaller R (fixed multiplicity, same N_{part})

Larger pressure gradient higher collision rate of partons

Faster collective expansion Larger radial flow

Larger mean p_T

System size affect the transverse momentum of particles



G. Giacalone, PRC102, 024901(2020)

Shape-flow transmutation

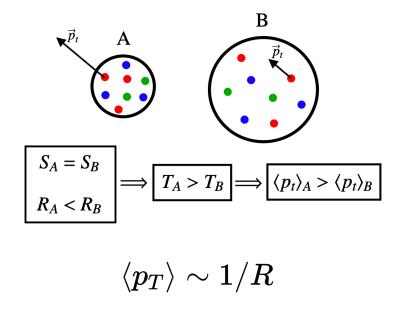
Smaller R (fixed multiplicity, same N_{part})

Larger pressure gradient higher collision rate of partons

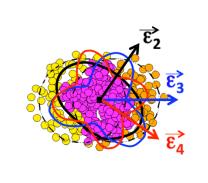
Faster collective expansion Larger radial flow

Larger mean p_T

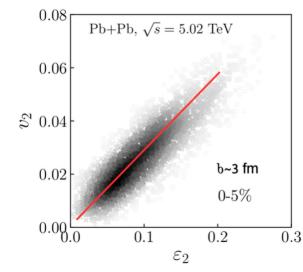
System size affect the transverse momentum of particles



• Shape affect anisotropic flow of particles



$$ec{\epsilon}_n \equiv \epsilon_n e^{in\Phi_n^*} \equiv -rac{\left\langle r^n e^{in\phi}
ight
angle}{\left\langle r^n
ight
angle}$$

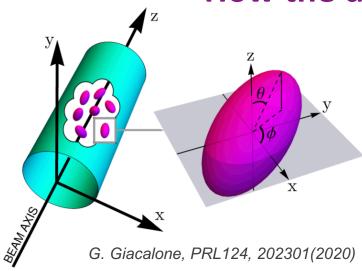


 $v_{
m n} \propto \epsilon_{
m n}$

F.G. Gardim et al., arXiv:2002.07008v1

G. Giacalone, PRC102, 024901(2020)

How the deformation affect the v_2 - $\langle p_T \rangle$ correlation

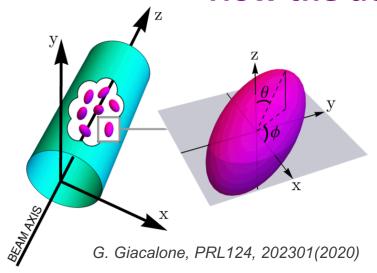


For a deformed nucleus, the leading form of nuclear density becomes:

$$ho(r, heta) = rac{
ho_0}{1 + e^{(r-R_0(1+ rac{oldsymbol{eta_2}}{2} Y_{20}(heta))/a}} \qquad_{Y_{20} = \sqrt{rac{5}{16\pi}}(3\cos^2 heta - 1)}$$

Deformation is dominated by quadrupole component β_2

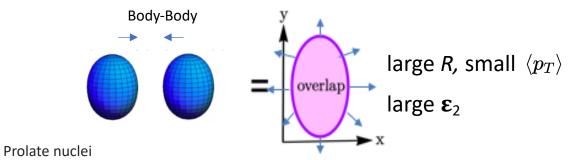
How the deformation affect the v_2 - $\langle p_T \rangle$ correlation



For a deformed nucleus, the leading form of nuclear density becomes:

$$ho(r, heta) = rac{
ho_0}{1 + e^{(r-R_0(1+ rac{oldsymbol{eta_2}}{2} Y_{20}(heta))/a}} \qquad_{Y_{20} = \sqrt{rac{5}{16\pi}}(3\cos^2 heta - 1)}$$

Deformation is dominated by quadrupole component β_2



• ϵ_2 and R are influenced by the quadrupole deformation β_2

- small $extit{\emph{R}}$, large $\langle p_T
 angle$ small $extit{\emph{\varepsilon}}_2$
- deformation contributes to anticorrelation between v_2 and $\langle p_T \rangle$

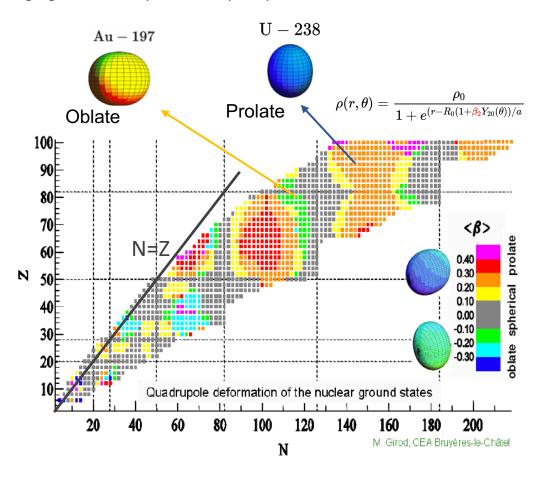
Ultra-central collisions

Measuring the v_2 - $\langle p_T \rangle$ correlation could reveal the quadrupole deformation β_2 .

• $\langle p_T \rangle \sim 1/R$ and $v_2 \propto \varepsilon_2$:

Quadrupole deformations β_2 of different nuclei

A. gorgen, Tech. Rep. 051, 019(2015)

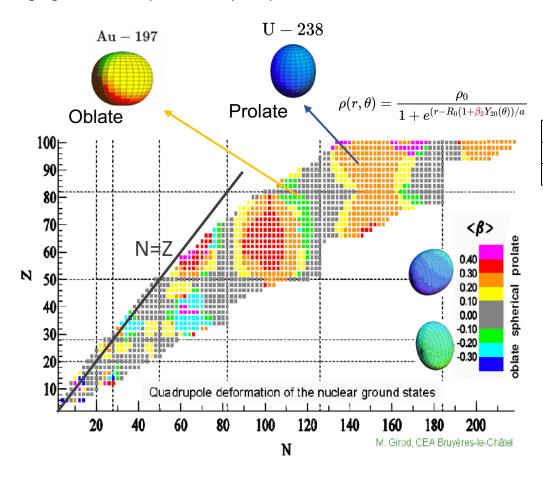


Hartree-Fock-Bogolyubov (Gogny D1S effective interaction)

Quadrupole deformations β_2 of different nuclei

A. gorgen, Tech. Rep. 051, 019(2015)

G. Giacalone, "Phenomenology of nuclear structure in HI"



Hartree-Fock-Bogolyubov (Gogny D1S effective interaction)

A few values based on the nuclear structure approximations

The β_2 of ²³⁸U still have a large uncertainty:

reference	Raman et al.	Löbner et al.	Möller et al.	Möller et al.	CEA DAM	Bender et al.
method	\exp	\exp	FRDM	FRLDM	HFB	"beyond mean field"
eta_2	0.286	0.281	0.215	0.236	0.30	0.29

[Raman et al., ADNDT78,1(2001)]

[Möller et al., ADNDT59,185(1995)]

[Hilaire & Girod, EPJA(2007)]

[Löbner et al., NDT A7, 495 (1970)]

[Möller et al., 1508.06294]

[Bender et al., nucl-th/0508052]

The β_2 of ¹⁷⁹Au is small and can be used as baseline

reference	Möller et al.	Möller et al.	CEA DAM
method	FRDM	FRLDM	HFB
eta_2	-0.131	-0.125	-0.10

[Möller et al., 1508.06294]

[Möller et al., ADNDT59,185(1995)] [Hilaire & Gir

[Hilaire & Girod, EPJA(2007)]

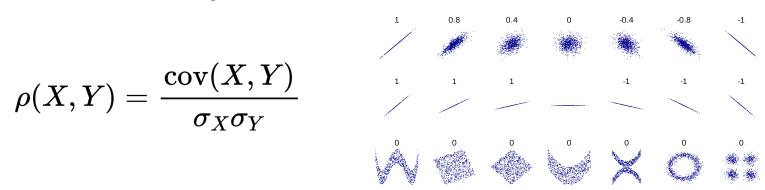
Or access BNL nuclear data center

Can we constrain β_2 of uranium using $v_2 - \langle p_T \rangle$ correlations?

Observables

Pearson correlation coefficient: measuring linear correlation between two variables X and Y.

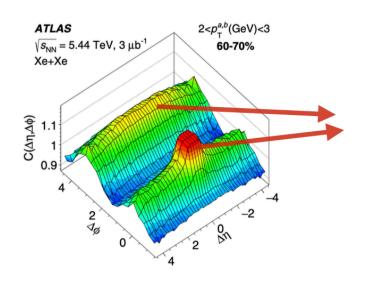
$$ho(X,Y) = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$



Pearson coefficient: v_n - p_T three particle correlator

$$\rho\left(v_{n}^{2},[p_{\mathrm{T}}]\right) \equiv \left\langle \frac{\sum_{i \neq j \neq k} w_{i}w_{j}w_{k}e^{in\phi_{i}}e^{-in\phi_{j}}(p_{\mathrm{T},k}-\langle\langle p_{\mathrm{T}}\rangle\rangle)}{\sum_{i \neq j \neq k} w_{i}w_{j}w_{k}} \right\rangle_{\mathrm{evt}} \\ \rho\left(v_{n}^{2},[p_{\mathrm{T}}]\right) = \frac{\mathrm{cov}\left(v_{n}^{2},[p_{\mathrm{T}}]\right)}{\sqrt{\mathrm{Var}\left(v_{n}^{2}\right)_{\mathrm{dyn}}\langle\delta p_{\mathrm{T}}\delta p_{\mathrm{T}}\rangle}} \\ Var\left(v_{n}^{2}\right)_{\mathrm{dyn}} = v_{n}\{2\}^{4} - v_{n}\{4\}^{4} \\ \left\langle \delta p_{\mathrm{T}}\delta p_{\mathrm{T}} \right\rangle = \left\langle \frac{\sum_{i \neq j} w_{i}w_{j}(p_{\mathrm{T},i} - \langle\langle p_{\mathrm{T}}\rangle)(p_{\mathrm{T},j} - \langle\langle p_{\mathrm{T}}\rangle\rangle)}{\sum_{i \neq j} w_{i}w_{j}} \right\rangle_{\mathrm{evt}} \\ \left\langle \delta p_{\mathrm{T}}\delta p_{\mathrm{T}} \right\rangle = \left\langle \frac{\sum_{i \neq j} w_{i}w_{j}(p_{\mathrm{T},i} - \langle\langle p_{\mathrm{T}}\rangle)(p_{\mathrm{T},j} - \langle\langle p_{\mathrm{T}}\rangle\rangle)}{\sum_{i \neq j} w_{i}w_{j}} \right\rangle_{\mathrm{evt}}$$

Non-flow suppression



Short range non-flow correlations: jets, resonance decays, HBT, etc.

$$hoig(v_n^2,[p_T]ig) = rac{ ext{cov}ig(v_n^2,[p_T]ig)}{\sqrt{ ext{Var}ig(v_n^2ig)_{ ext{dyn}}\langle\delta p_T\delta p_T
angle}}$$

non-flow suppression via subevent methods by correlating particles from different η windows

Full event 2-subevent 3-subevent

 $|v_2,p_T|\eta|<1.0$

 $v_2^{
m A}~\eta < -0.1$

 $v_2^{
m B}~\eta>0.1$

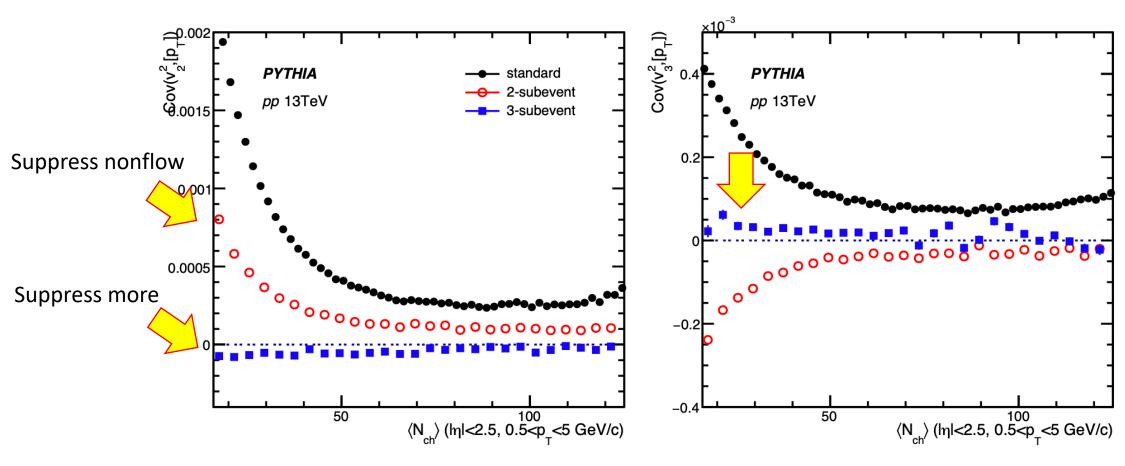
 $v_2^{
m A}~\eta < -0.35$

 $v_2^{
m B}|\eta| < 0.3$

 $v_2^{
m C} \eta > 0.35$

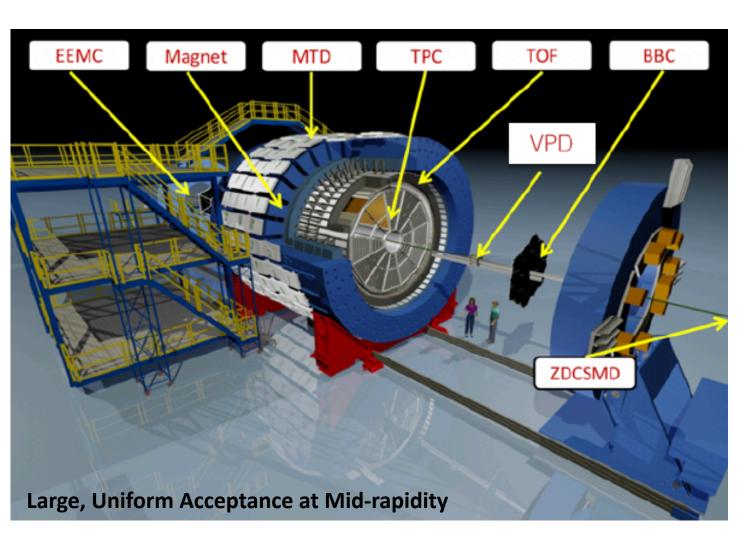
Non-flow suppression in PYTHIA testing model

PYTHIA only have non-flow.



Subevent method do suppress nonflow clearly.

The STAR detector



Dataset:

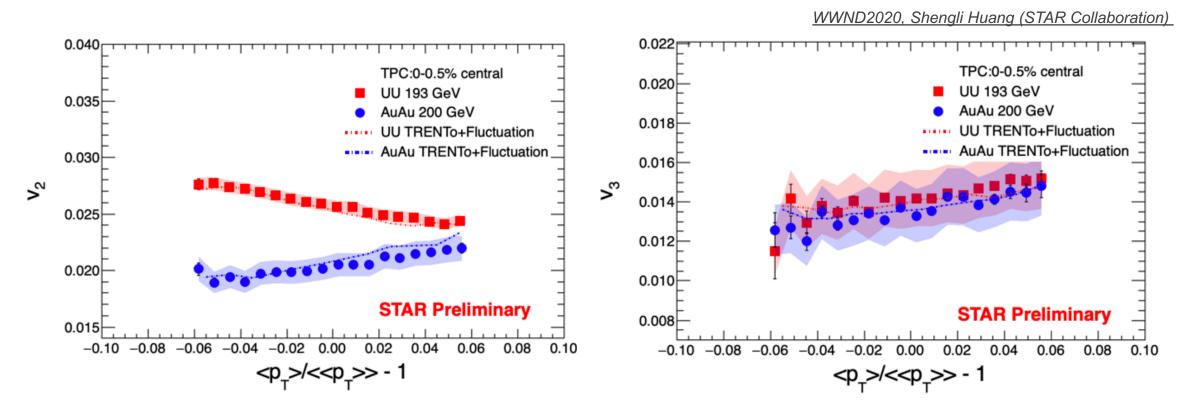
Au+Au@200GeV, year2011 U+U@193GeV, year2012

• $\langle p_T \rangle$, v_n , N_{ch} are measured within:

$$0.2 < p_T < 2.0~{
m GeV/c}$$
 and $0.5 < p_T < 2.0~{
m GeV/c}$ $|\eta| < 1.0$

• Centrality is defined by N_{ch} ($|\eta|$ <0.5).

Event-by-event v_n vs. $\langle p_T \rangle$ in ultra central (0-0.5%) collisions



v_n	System	slope
v_2	U + U	$-3.5\% \pm 0.1\%$
v_2	$\mathrm{Au} + \mathrm{Au}$	$2.6\%\pm0.2\%$
v_3	U + U	$1.7\%\pm0.2\%$
v_3	$\mathrm{Au} + \mathrm{Au}$	$1.9\%\pm0.2\%$

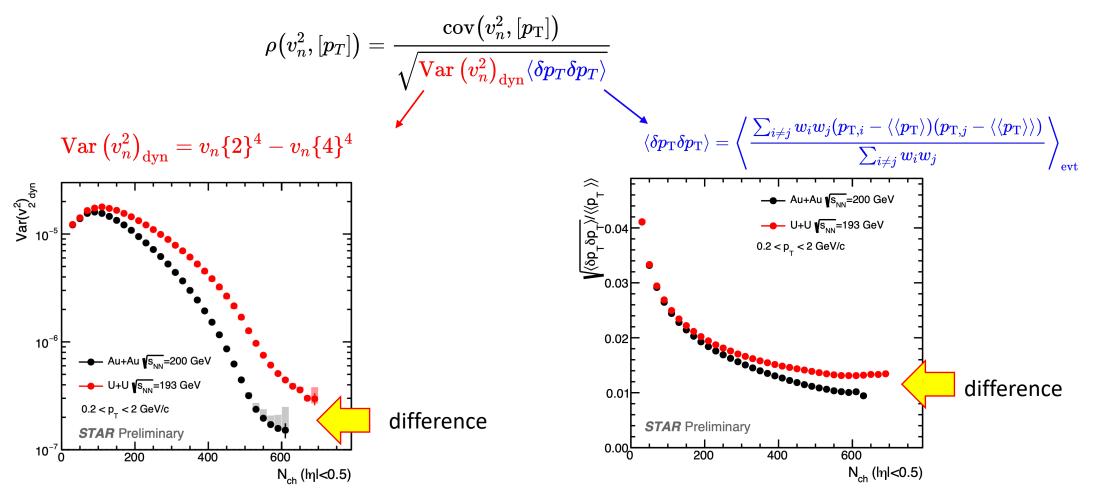
An anticorrelation is observed between v_2 and $\langle p_T \rangle$ in top 0.5% U+U collisions while not in Au+Au.

 v_3 and $\langle p_T \rangle$ correlations are positive and similar for Au+Au and U+U collisions.

After incorporating the statistical fluctuation due to finite multiplicity, the TRENTo model can reproduce the data quantitively.

The anticorrelation in v_2 vs. $\langle p_T \rangle$ for U+U is due to deformation.

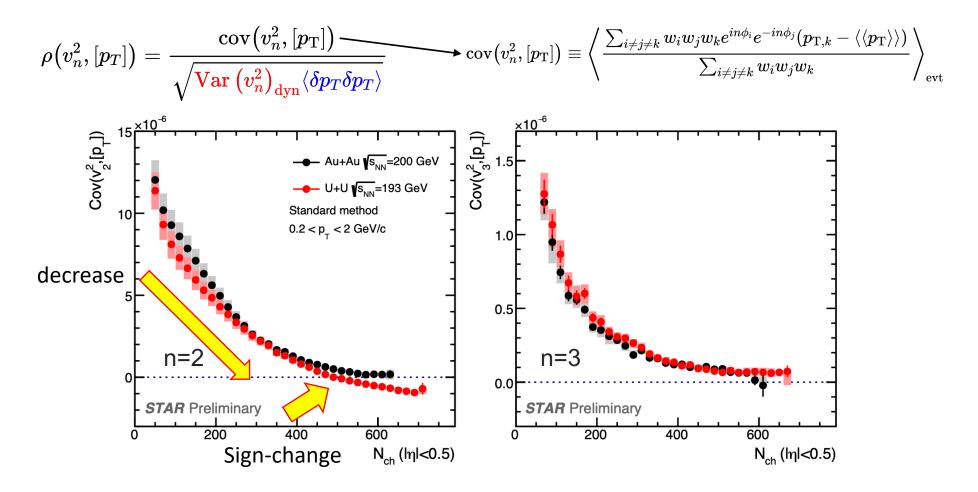
Dynamical v_n^2 variance and $\langle p_T \rangle$ fluctuations



difference of flow fluctuation due to deformation.

difference of $\langle p_T \rangle$ fluctuation due to deformation .

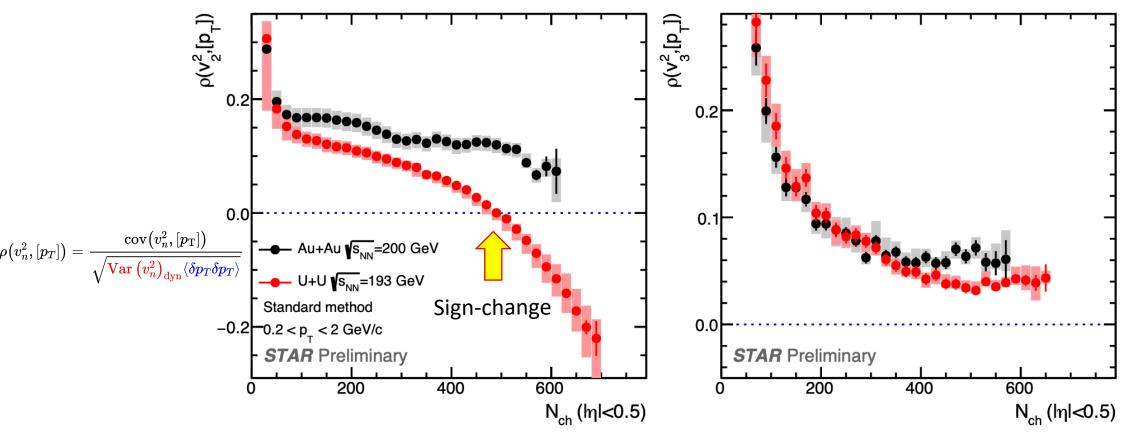
Covariance $Cov(v_n^2, [p_T])$



U+U collisions show a sign-change behavior in $Cov(v_2^2, [p_T])$ while not in Au+Au. But they are consistent for $Cov(v_3^2, [p_T])$.

This sign-change behavior indicates the effect of deformation.

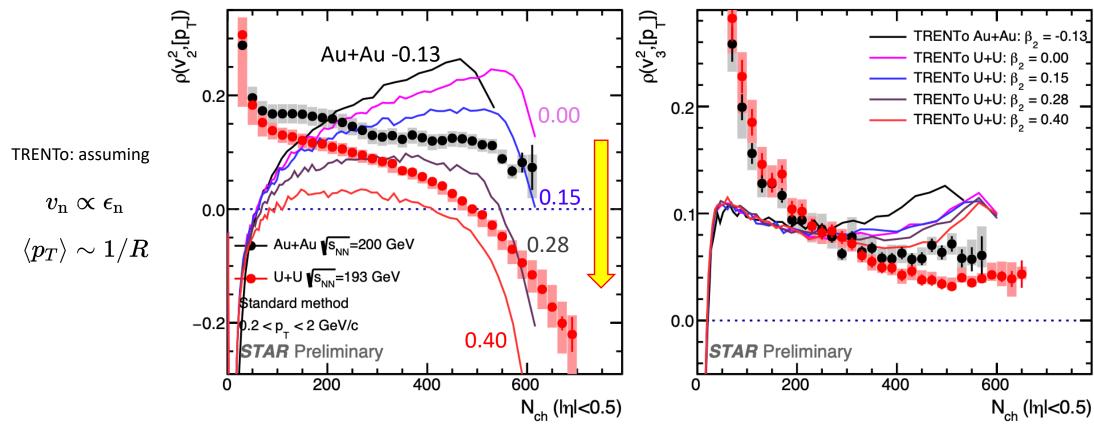
Pearson coefficient $\rho(v_n^2, [p_T])$



 $ho(v_2^2,[p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $ho(v_3^2,[p_T])$ is always positive in Au+Au and U+U collisions.

$\rho \! \left(v_n^2, [p_T] \right)$ compared with TRENTo initial condition model

TRENTo: private calculation provided by Giuliano Giacalone(based on PRC102, 024901(2020), PRL124, 202301(2020))

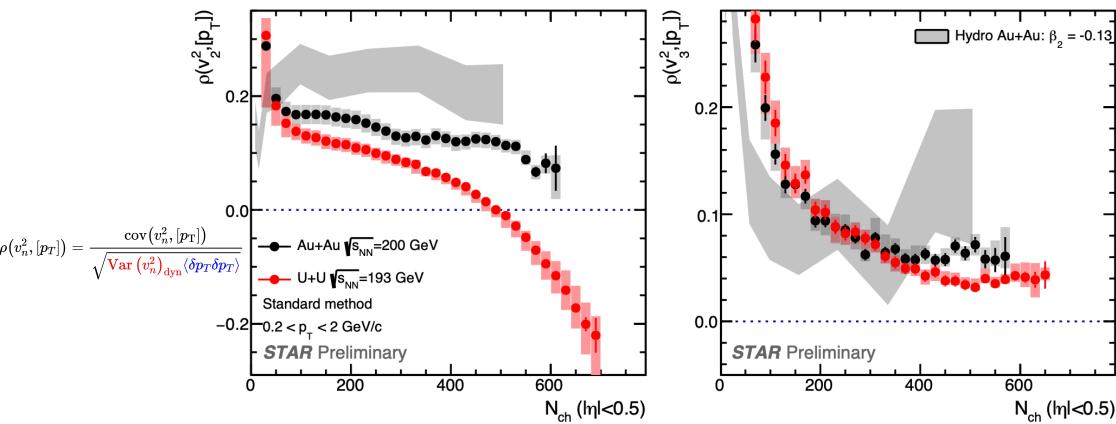


TRENTo fails to describe the STAR data but show an hierarchical β_2 dependence in U+U collisions.

TRENTo suggests this sign-change in the central collisions could be due to deformation effect.

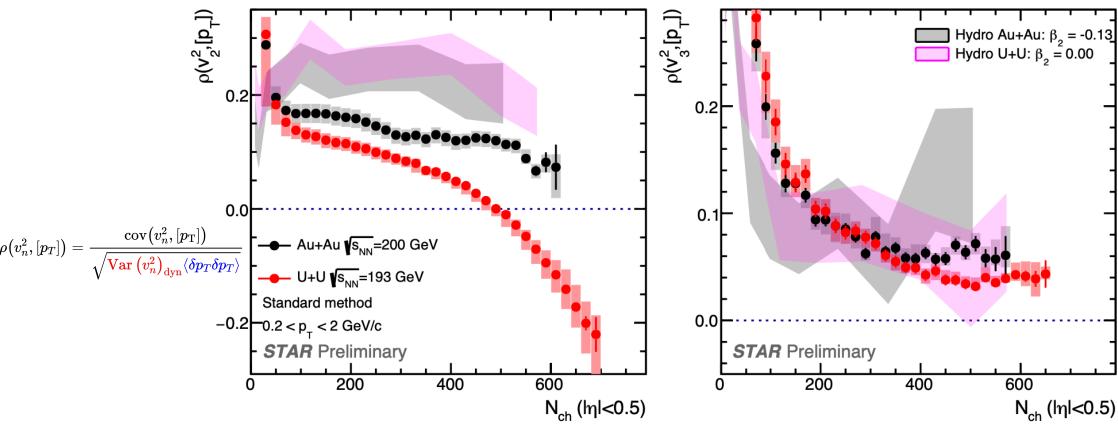
TRENTo prefers the β_2 value between 0.28 to 0.4.

$\rho \left(v_n^2, [p_T] \right)$ compared with IP-Glasma+Hydro



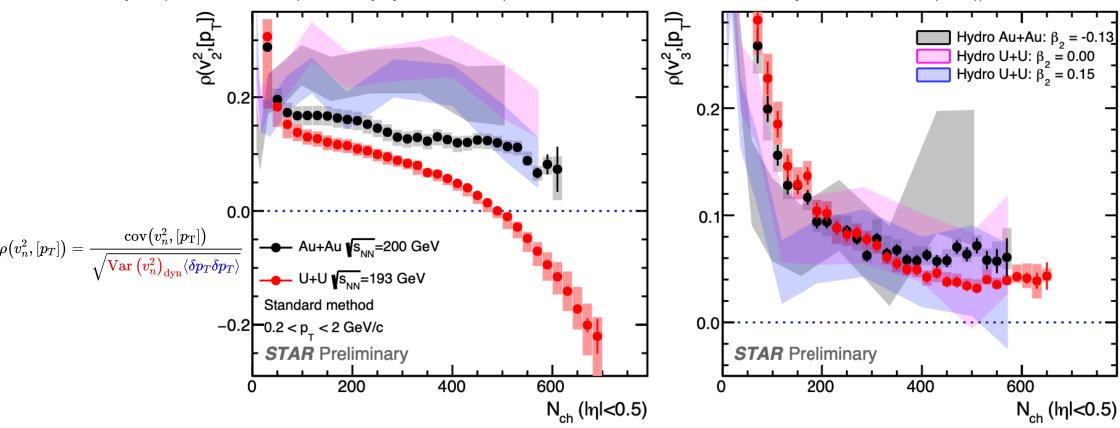
 $\rho(v_2^2, [p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $\rho(v_3^2, [p_T])$ is always positive in Au+Au and U+U collisions.

$\rho(v_n^2, [p_T])$ compared with IP-Glasma+Hydro



 $\rho(v_2^2, [p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $\rho(v_3^2, [p_T])$ is always positive in Au+Au and U+U collisions.

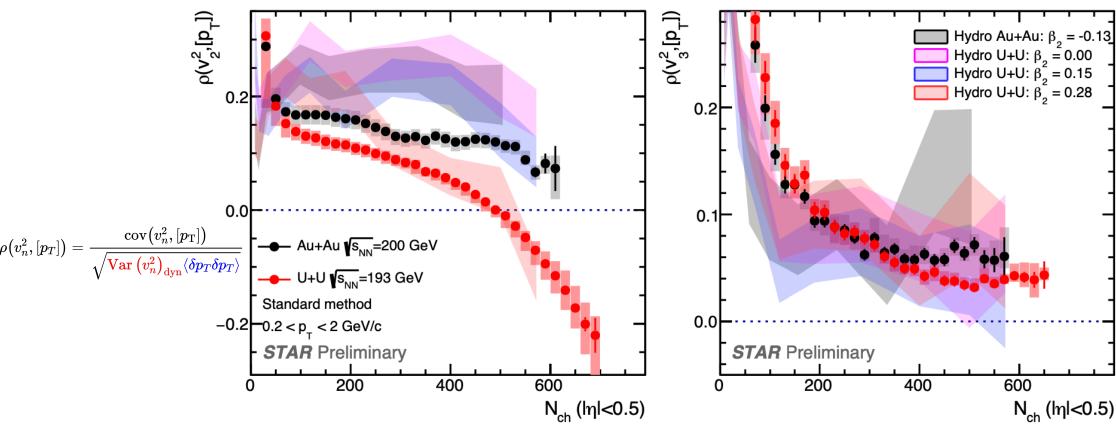
$\rho(v_n^2, [p_T])$ compared with IP-Glasma+Hydro



 $\rho(v_2^2, [p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $\rho(v_3^2, [p_T])$ is always positive in Au+Au and U+U collisions.

$\rho \left(v_n^2, \left[p_T \right] \right)$ compared with IP-Glasma+Hydro

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

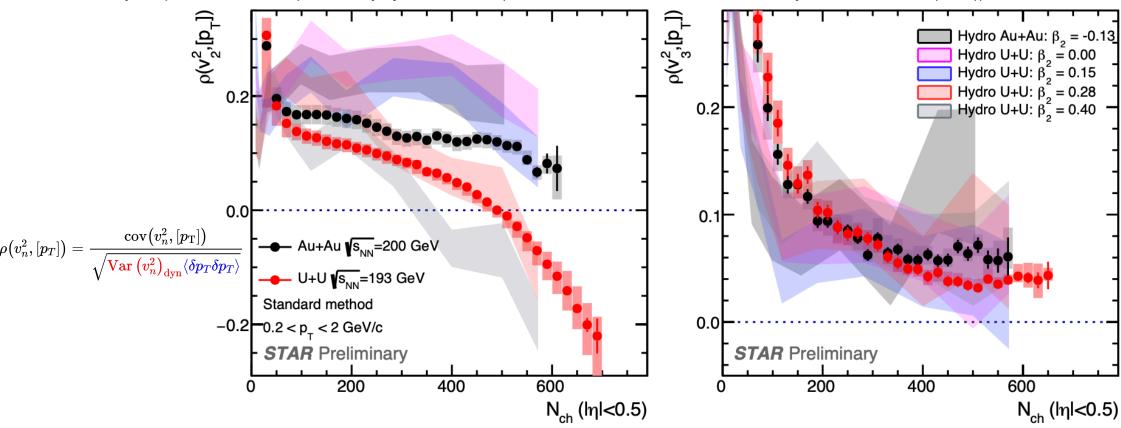


 $\rho(v_2^2, [p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $\rho(v_3^2, [p_T])$ is always positive in Au+Au and U+U collisions.

A hierarchical behavior shows the β_2 dependence in Uranium $\rho(v_2^2, [p_T])$ but not in $\rho(v_3^2, [p_T])$.

$\rho \! \left(v_n^2, [p_T] \right)$ compared with IP-Glasma+Hydro

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

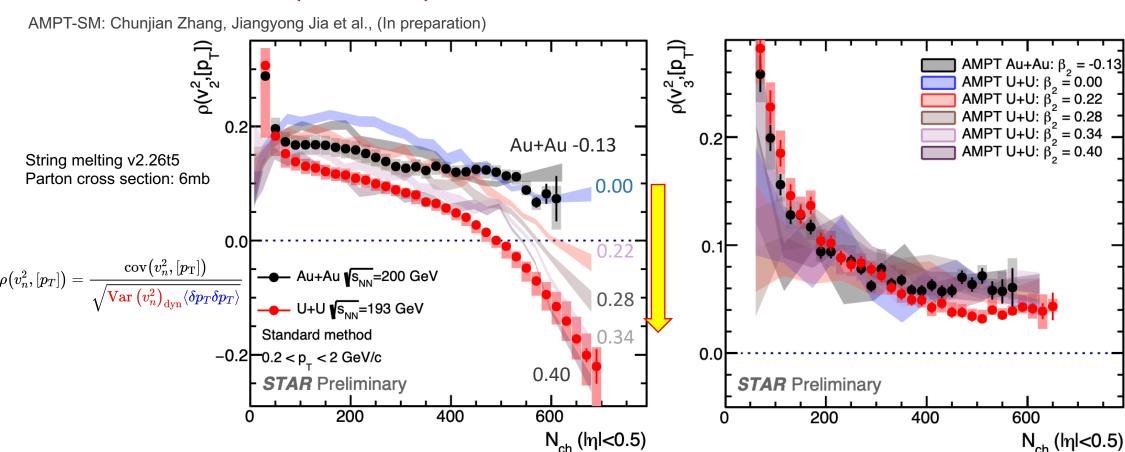


 $\rho(v_2^2, [p_T])$ has a clear difference: negative (anticorrelation) in U+U central, positive in Au+Au central. $\rho(v_3^2, [p_T])$ is always positive in Au+Au and U+U collisions.

A hierarchical behavior shows the β_2 dependence in Uranium $\rho(v_2^2, [p_T])$ but not in $\rho(v_3^2, [p_T])$.

The sign-change is due to deformation effect and it quantifies the β_2 value around 0.28 with large uncertainty.

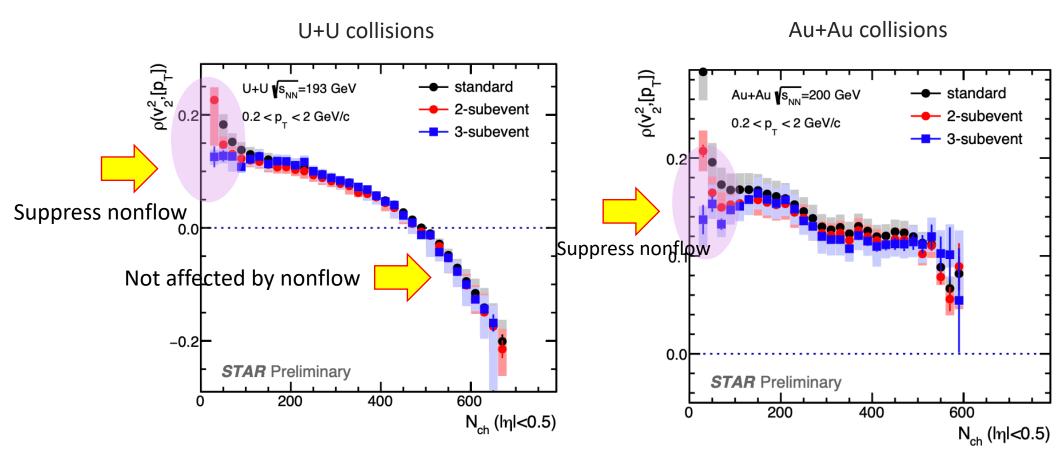
$\rho \! \left(v_n^2, [p_T] \right)$ compared with transport AMPT model



AMPT shows a clear β_2 dependence in Uranium $\rho(v_2^2, [p_T])$ while not in $\rho(v_3^2, [p_T])$.

AMPT also confirms the sign-change behavior could due to deformation effect.

The effects of non-flow in $\rho(v_n^2, [p_T])$

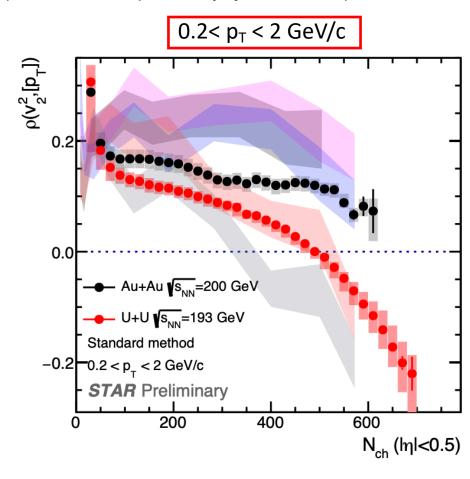


Standard method is consistent with subevent methods at high N_{ch}.

Subevent methods could decrease non-flow contributions in peripheral collisions.

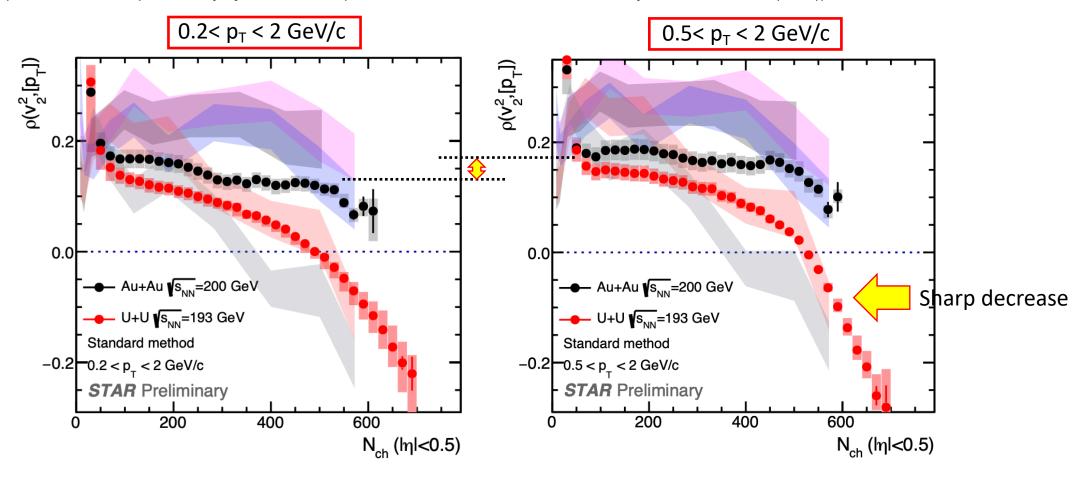
Non-flow effect is not responsible for the Uranium sign-change.

$\rho \left(v_n^2, \left[p_T \right] \right)$ in different p_T selection



$\rho \left(v_n^2, [p_T] \right)$ in different p_T selection

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))



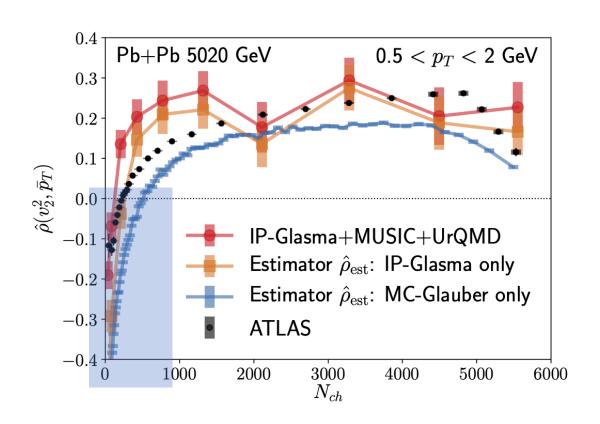
Features are same for $0.5 < p_T < 2 \text{ GeV/c}$ as $0.2 < p_T < 2 \text{ GeV/c}$.

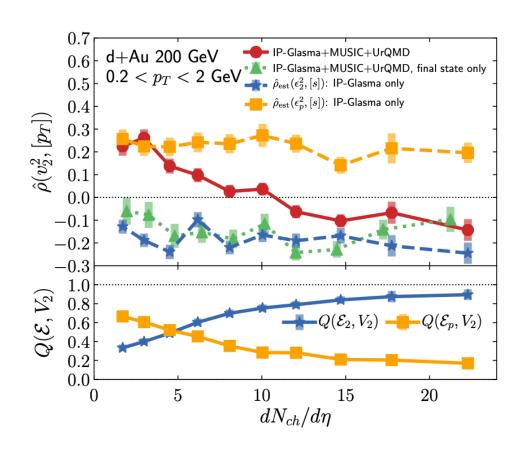
Conclusions and outlooks

- 1. We presented flow and mean transverse momentum correlation from STAR that demonstrate a clear shape–flow transmutation.
 - Study of mean p_T fluctuation is also an intriguing possibility to probe nuclear deformation.
- 2. The sign-change behavior in Pearson coefficient $\rho(v_2^2, [p_T])$ in central U+U collisions could be used to constrain deformation parameters.
 - Subevent methods could decrease non-flow contributions in peripheral collisions.
 - Main features are robust against p_T selection.
- 3. IP-Glasma+Hydro model partially reproduces the data with Uranium deformation parameter β_2 around 0.28 with large uncertainty.
- 4. Precise data-model comparison (IP-Glasma+Hydro, TRENTo, AMPT) could be helpful to constrain the initial conditions such as nuclear deformation parameters, shear/bulk viscosity and speed of sound in EoS.
- 5. Heavy ion collisions open up an avenue for studying nuclear structure.

Many thanks to ZiManYi School and also thank you for listening.

predictions in IP-Glasma+MUSIC+UrQMD



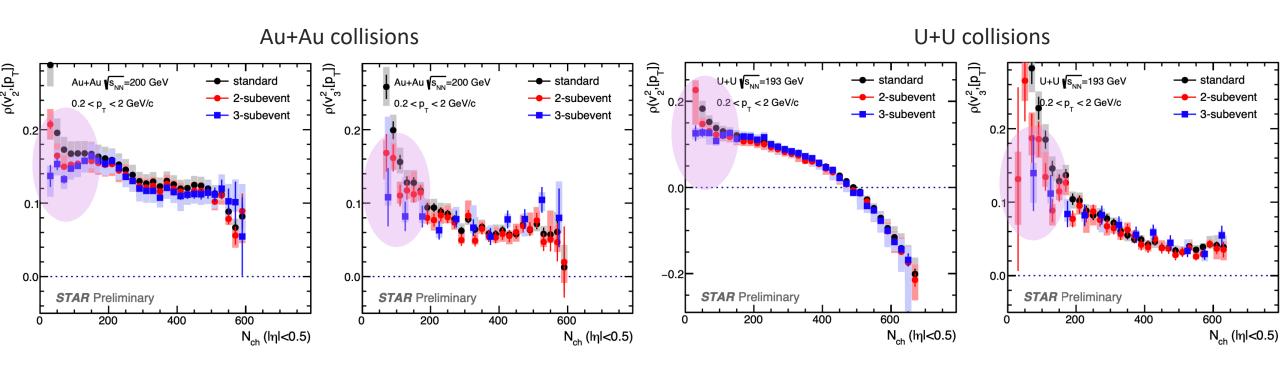


Bjoern Schenke, Chun Shen and Derek Teaney, PRC102, 034905 (2020)

Giuliano Giacalone, Bjoern Schenke and Chun Shen, PRL125, 192301(2020)

Initial geometry leads negative correlation in peripheral region and initial momentum anisotropy lead positive correlation

$\rho \! \left(v_n^2, [p_T] \right)$ is not affected by non-flow

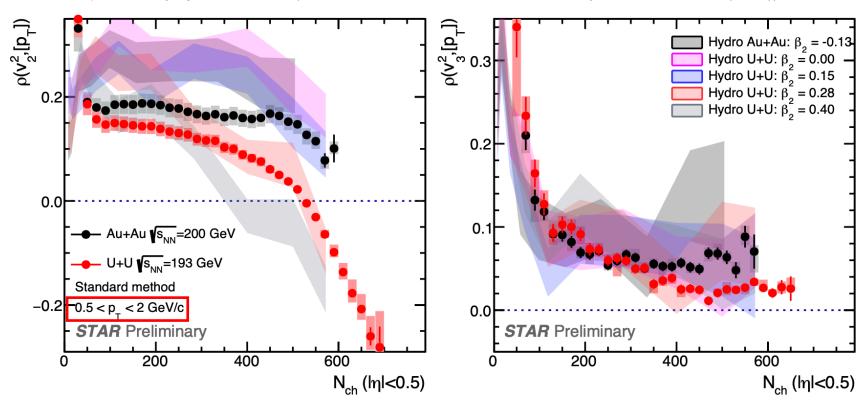


Standard method is consistent with subevent methods at high N_{ch}.

Subevent methods could decrease non-flow contributions in peripheral collisions.

Pearson coefficient $\rho(v_n^2, [p_T])$ in 0.5< p_T < 2 GeV/c

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))



Features are same for $0.5 < p_T < 2 \text{GeV/c}$ as $0.2 < p_T < 2 \text{GeV/c}$.