QGP TOMOGRAPHY: INFERRING BULK MEDIUM PROPERTIES FROM HIGH p_{\perp} DATA

STEFAN STOJKU, INSTITUTE OF PHYSICS BELGRADE

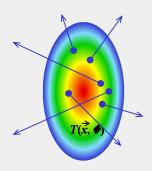
IN COLLABORATION WITH: MAGDALENA DJORDJEVIC, JUSSI AUVINEN, MARKO DJORDJEVIC AND PASI HUOVINEN

■ Bulk properties of QGP - traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision).

- Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision).
- Rare high energy particles traversing QCD medium excellent probe of QGP properties.

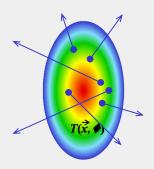
- Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision).
- Rare high energy particles traversing QCD medium excellent probe of QGP properties.
- High energy particles:
 - Are produced only during the initial stage of QCD matter

- Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision).
- Rare high energy particles traversing QCD medium excellent probe of QGP properties.
- High energy particles:
 - Are produced only during the initial stage of QCD matter
 - Significantly interact with the QCD medium

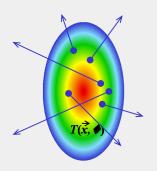

- Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision).
- Rare high energy particles traversing QCD medium excellent probe of QGP properties.
- High energy particles:
 - Are produced only during the initial stage of QCD matter
 - Significantly interact with the QCD medium
 - ► Perturbative calculations are possible

- Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision).
- Rare high energy particles traversing QCD medium excellent probe of QGP properties.
- High energy particles:
 - Are produced only during the initial stage of QCD matter
 - Significantly interact with the QCD medium
 - ► Perturbative calculations are possible
- Theoretical predictions can be compared with a wide range of experimental data.

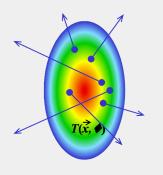
- Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision).
- Rare high energy particles traversing QCD medium excellent probe of QGP properties.
- High energy particles:
 - Are produced only during the initial stage of QCD matter
 - Significantly interact with the QCD medium
 - ► Perturbative calculations are possible
- Theoretical predictions can be compared with a wide range of experimental data.
- Our state-of-the-art dynamical energy loss formalism is embedded in DREENA-A framework


■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP.

■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP.


■ High energy particles lose energy when they traverse QGP.

■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP.


- High energy particles lose energy when they traverse QGP.
- This energy loss is sensitive to QGP properties.

■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP.

- High energy particles lose energy when they traverse QGP.
- This energy loss is sensitive to QGP properties.
- DREENA can realistically predict this energy loss.

■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP.

- High energy particles lose energy when they traverse QGP.
- This energy loss is sensitive to QGP properties.
- DREENA can realistically predict this energy loss.

- High- p_{\perp} probes are excellent tomoraphy tools.
- We can use them to infer some of the bulk QGP properties.

How to constrain QGP THERMALIZATION TIME USING HIGH- p_{\perp} Data?

■ The dynamics before thermalization time τ_0 not established (applicability of hydrodynamics, energy loss phenomena)

- The dynamics before thermalization time τ_0 not established (applicability of hydrodynamics, energy loss phenomena)
- Therefore, τ_0 is an important parameter affects evolution of the system, as well as interactions of high p_{\perp} particles with the medium

- The dynamics before thermalization time τ_0 not established (applicability of hydrodynamics, energy loss phenomena)
- Therefore, τ_0 is an important parameter affects evolution of the system, as well as interactions of high p_{\perp} particles with the medium
- lacktriangle Conventional hydrodynamics approach: vary au_0 and compare obtained distributions with data

- The dynamics before thermalization time τ_0 not established (applicability of hydrodynamics, energy loss phenomena)
- Therefore, τ_0 is an important parameter affects evolution of the system, as well as interactions of high p_{\perp} particles with the medium
- lacktriangle Conventional hydrodynamics approach: vary au_0 and compare obtained distributions with data
- An analysis employing Bayesian statistics has shown that low p_{\perp} data provides only weak limits to the thermalization time: $\tau_0 = 0.59 \pm 0.41 fm/c$, with 90% credibility
- Further constraints would be useful.

■ We here analyze how high p_{\perp} observables R_{AA} and v_2 depend on the QGP thermalization time τ_0

- We here analyze how high p_{\perp} observables R_{AA} and v_2 depend on the QGP thermalization time τ_0
- We assume free streaming of high p_{\perp} particles before thermalization and neglect pre-equilibrium evolution of the medium.

- We here analyze how high p_{\perp} observables R_{AA} and v_2 depend on the QGP thermalization time τ_0
- We assume free streaming of high p_{\perp} particles before thermalization and neglect pre-equilibrium evolution of the medium.
- After τ_0 , medium is described as a relativistic viscous fluid.

- We here analyze how high p_{\perp} observables R_{AA} and v_2 depend on the QGP thermalization time τ_0
- We assume free streaming of high p_{\perp} particles before thermalization and neglect pre-equilibrium evolution of the medium.
- After τ_0 , medium is described as a relativistic viscous fluid.
- High p_{\perp} particles start to lose energy through the interactions with the medium.

■ When calculating how the high p_{\perp} observables depend on τ_0 , one has to first make sure that QGP medium evolution is compatible with the observed distributions of low p_{\perp} particles.

- When calculating how the high p_{\perp} observables depend on τ_0 , one has to first make sure that QGP medium evolution is compatible with the observed distributions of low p_{\perp} particles.
- We describe the medium using 3+1D viscous hydrodynamical model

E. Molnar, H. Holopainen, P. Huovinen and H. Niemi, Phys. Rev. C90, 044904 (2014).

- When calculating how the high p_{\perp} observables depend on τ_0 , one has to first make sure that QGP medium evolution is compatible with the observed distributions of low p_{\perp} particles.
- We describe the medium using 3+1D viscous hydrodynamical model

E. Molnar, H. Holopainen, P. Huovinen and H. Niemi, Phys. Rev. C90, 044904 (2014).

■ We ignore pre-equilibrium evolution and set a constant $\eta/\mathrm{s} = \mathrm{0.12}$

- When calculating how the high p_{\perp} observables depend on τ_0 , one has to first make sure that QGP medium evolution is compatible with the observed distributions of low p_{\perp} particles.
- We describe the medium using 3+1D viscous hydrodynamical model

E. Molnar, H. Holopainen, P. Huovinen and H. Niemi, Phys. Rev. C90, 044904 (2014).

- We ignore pre-equilibrium evolution and set a constant $\eta/\mathrm{s} = \mathrm{0.12}$
- Model parameters are tuned for each τ_0 to match observed charged particle multiplicities and low p_{\perp} v_2 in Pb + Pb collisions at $\sqrt{s_{NN}} = 5.01$ TeV.

■ Bass et al. (2017) showed that comparison of relativistic hydrodynamics with low p_{\perp} data is insensitive to a wide range of thermalization times (0.2 $fm < \tau_0 <$ 1.2fm)

6 | 1

- Bass *et al.* (2017) showed that comparison of relativistic hydrodynamics with low p_{\perp} data is insensitive to a wide range of thermalization times (0.2 $fm < \tau_0 < 1.2fm$)
- Independently confirmed by our systematic analysis: 3+1D viscous hydrodynamics model run with six different thermalization times:

S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

- Bass *et al.* (2017) showed that comparison of relativistic hydrodynamics with low p_{\perp} data is insensitive to a wide range of thermalization times (0.2 $fm < \tau_0 < 1.2fm$)
- Independently confirmed by our systematic analysis: 3+1D viscous hydrodynamics model run with six different thermalization times:

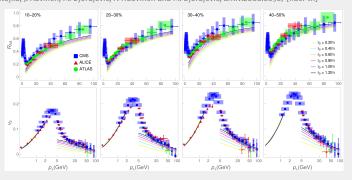
 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

 $\begin{array}{c} 70 = 0.2 \, \mathrm{fm} \\ 70 = 0.4 \, \mathrm{fm} \\ 70 = 0.6 \, \mathrm{fm} \\ 70 = 0.8 \, \mathrm{fm} \\ 70 = 1.0 \, \mathrm{fm} \\ 70 = 1.0 \, \mathrm{fm} \\ 70 = 1.2 \, \mathrm{fm}$

■ Good agreement with low p_{\perp} data confirms low sensitivity to τ_0 .

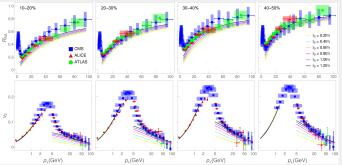
- Bass et al. (2017) showed that comparison of relativistic hydrodynamics with low p_{\perp} data is insensitive to a wide range of thermalization times (0.2 $fm < \tau_0 <$ 1.2fm)
- Independently confirmed by our systematic analysis: 3+1D viscous hydrodynamics model run with six different thermalization times:

 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]


 $\begin{array}{c} \tau_0 = 0.2 \text{ fm} \\ \tau_0 = 0.4 \text{ fm} \\ \tau_0 = 0.4 \text{ fm} \\ \tau_0 = 0.6 \text{ fm} \\ \tau_0 = 0.6 \text{ fm} \\ \tau_0 = 0.8 \text{ fm} \\ \tau_0 = 0.8 \text{ fm} \\ \tau_0 = 1.0 \text{ fm} \\ \tau_0 = 1.2 \text{ fm} \\ \lambda LICE \\ (0.5)\% \times 10 \\ (0.5)\% \times 10 \\ (0.5)\% \times 10 \\ (0.5)\% \times 10 \\ (0.50)\% \times 0.5 \\ (0.50)\% \times 0$

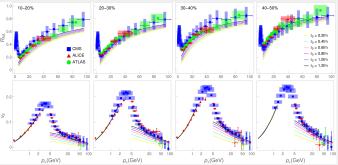
 p_T [GeV]

- Good agreement with low p_{\perp} data confirms low sensitivity to τ_0 .
- Can this indeterminancy be further constrained through high p_⊥ theory and data?

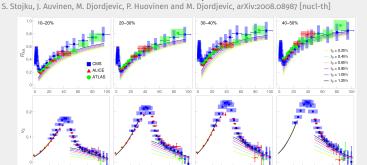

■ Next step: use DREENA-A to generate high p_{\perp} data for all τ_0 (charged hadrons, $Pb + Pb @ \sqrt{s_{NN}} = 5.01 \text{ TeV}$)

S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

■ Next step: use DREENA-A to generate high p_{\perp} data for all τ_0 (charged hadrons, $Pb + Pb \otimes \sqrt{s_{NN}} = 5.01 \text{ TeV}$)


S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

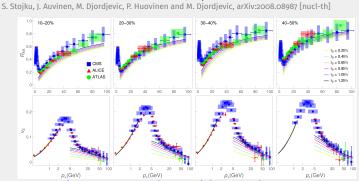
■ Low $p_{\perp}v_2$ is completely insensitive to different τ_0 .


■ Next step: use DREENA-A to generate high p_{\perp} data for all $\tau_{\rm O}$ (charged hadrons, Pb + Pb @ $\sqrt{s_{\rm NN}} = 5.01$ TeV)

S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

- Low $p_{\perp}v_2$ is completely insensitive to different τ_0 .
- On the other hand, high p_{\perp} predictions can clearly be resolved against experimental data.

■ Next step: use DREENA-A to generate high p_{\perp} data for all τ_0 (charged hadrons, Pb + Pb @ $\sqrt{s_{NN}} = 5.01$ TeV)

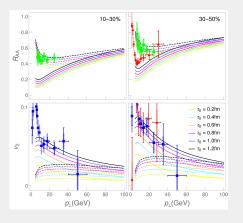


- Low $p_{\perp}v_2$ is completely insensitive to different τ_0 .
- On the other hand, high p_{\perp} predictions can clearly be resolved against experimental data.
- Later thermalization time is clearly preferred by R_{AA} and v_2 .

1

p.(GeV)

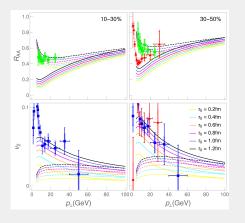
Next step: use DREENA-A to generate high p_{\perp} data for all τ_0 (charged hadrons, Pb + Pb @ $\sqrt{s_{NN}} = 5.01$ TeV)


- Low $p_{\perp}v_2$ is completely insensitive to different τ_0 .
- On the other hand, high p_{\perp} predictions can clearly be resolved against experimental data.
- Later thermalization time is clearly preferred by R_{AA} and v_2 .
- Resolution increases for higher centrality.

Heavy Flavor High p_{\perp} Results for Various $au_{ m o}$

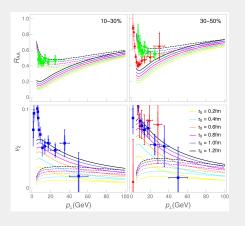
■ DREENA-A predictions for D mesons (full curves) and B mesons (dashed curves), Pb + Pb @ √s_{NN} = 5.01 TeV S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

Heavy Flavor High p_{\perp} Results for Various $au_{ m O}$


■ DREENA-A predictions for D mesons (full curves) and B mesons (dashed curves), Pb + Pb @ √s_{NN} = 5.01 TeV s. Stoiku, J. Auvinen, M. Diordievic, P. Huovinen and M. Diordievic, arXiv:2008.08987 [nucl-th]

- D meson: ALICE (red triangles), CMS (blue squares)
- B meson: CMS non-prompt J/ψ (green circles)

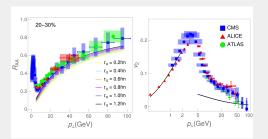
Heavy Flavor High p_{\perp} Results for Various $au_{ m o}$


DREENA-A predictions for D mesons (full curves) and B mesons (dashed curves), $Pb + Pb \ @ \sqrt{s_{NN}} = 5.01 \text{ TeV}$ S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

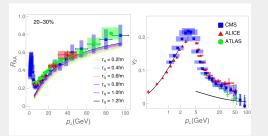
- D meson: ALICE (red triangles), CMS (blue squares)
- B meson: CMS non-prompt J/ψ (green circles)
- Heavy quarks are even more sensitive to τ_0 .

Heavy Flavor High p_{\perp} Results for Various $au_{ m O}$

■ DREENA-A predictions for D mesons (full curves) and B mesons (dashed curves), Pb + Pb @ √s_{NN} = 5.01 TeV s. Stoiku, J. Auvinen, M. Diordievic, P. Huovinen and M. Diordievic, arXiv:2008.08987 [nucl-th]


- D meson: ALICE (red triangles), CMS (blue squares)
- B meson: CMS non-prompt J/ψ (green circles)
- Heavy quarks are even more sensitive to τ_0 .
- Available data suggests that later thermalization time is preferred.

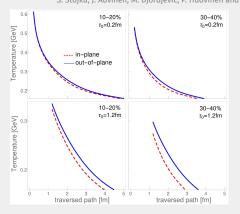
■ What if jet quenching starts later than QGP thermalization time (and subsequent medium evolution) τ_0 ?


- What if jet quenching starts later than QGP thermalization time (and subsequent medium evolution) τ_0 ?
- lacktriangle To test this scenario, we introduce quenching time $au_{oldsymbol{q}} \geq au_{oldsymbol{O}}$

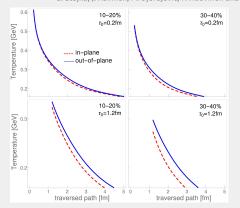
9 | 13

- What if jet quenching starts later than QGP thermalization time (and subsequent medium evolution) τ_0 ?
- lacktriangle To test this scenario, we introduce quenching time $au_{oldsymbol{q}} \geq au_{oldsymbol{Q}}$
- DREENA-A results generated on a temperature profile with $\tau_0 = 0.2$ fm, but τ_q in the range of = 0.2-1.2fm: S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

- What if jet quenching starts later than QGP thermalization time (and subsequent medium evolution) τ_0 ?
- \blacksquare To test this scenario, we introduce quenching time $\tau_{\mathbf{q}} \geq \tau_{\mathbf{0}}$
- DREENA-A results generated on a temperature profile with $\tau_0 = 0.2$ fm, but τ_q in the range of = 0.2-1.2fm: S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

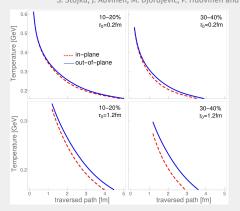


■ v_2 surprisingly insensitive to τ_q !

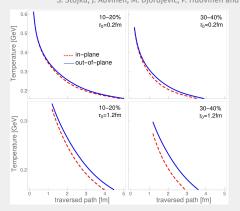

■ ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q)

- \blacksquare ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q)
- We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = \mathbf{o})$ and out-of-plane $(\phi = \pi/2)$ directions for various $\tau_{\mathbf{O}}$ S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

- ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q)
- We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]



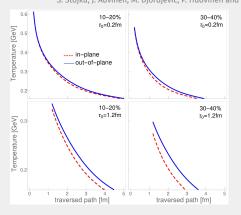
- ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q)
- We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]


■ As τ_0 increases \implies the difference between average in-plane and out-of-plane temperatures increases

- ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q)
- We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

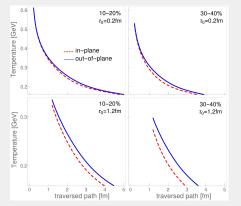
- As τ_0 increases \implies the difference between average in-plane and out-of-plane temperatures increases
- Recall that $v_2 \approx \frac{1}{2} \frac{R_{AA}^{in} R_{AA}^{out}}{R_{AA}^{in} + R_{AA}^{out}}$

- ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q)
- We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]



- As τ_0 increases \Longrightarrow the difference between average in-plane and out-of-plane temperatures increases
- lacksquare Recall that $v_2 pprox rac{1}{2} rac{R_{AA}^{in} R_{AA}^{out}}{R_{AA}^{in} + R_{AA}^{out}}$

■ Explains the observed dependence of v_2 on τ_0 .


- \blacksquare ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q)
- We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

■ The difference between Ts is larger in more peripheral collisions \implies explains higher sensitivity of v_2 to τ_0 .

- \blacksquare ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_a)
- We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0

S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

- The difference between Ts is larger in more peripheral collisions \implies explains higher sensitivity of v_2 to τ_0 .
- Larger τ_0 have lower overall avg T ⇒ explains behaviour of $R_{\Delta\Delta}$.

■ We presented (to our knowledge) the first example of using of high p_{\perp} theory and data to constrain a parameter weakly sensitive to bulk medium evolution

- We presented (to our knowledge) the first example of using of high p theory and data to constrain a parameter weakly sensitive to bulk medium evolution
- By calculating high p_{\perp} R_{AA} and v_2 within our DREENA-A framework we demonstrated that experimental data favors later OGP thermalization time.

- We presented (to our knowledge) the first example of using of high p_{\perp} theory and data to constrain a parameter weakly sensitive to bulk medium evolution
- By calculating high p_{\perp} R_{AA} and v_2 within our DREENA-A framework we demonstrated that experimental data favors later QGP thermalization time.
- Heavy flavor shows large sensitivity to $\tau_0 \implies$ to be further tested by the upcoming high luminosity measurements.

- We presented (to our knowledge) the first example of using of high p_{\perp} theory and data to constrain a parameter weakly sensitive to bulk medium evolution
- By calculating high p_{\perp} R_{AA} and v_2 within our DREENA-A framework we demonstrated that experimental data favors later QGP thermalization time.
- Heavy flavor shows large sensitivity to $\tau_0 \implies$ to be further tested by the upcoming high luminosity measurements.
- v_2 more sensitive to τ_0 than R_{AA} we explained this sensitivity.

- We presented (to our knowledge) the first example of using of high p_{\perp} theory and data to constrain a parameter weakly sensitive to bulk medium evolution
- By calculating high p_{\perp} R_{AA} and v_2 within our DREENA-A framework we demonstrated that experimental data favors later QGP thermalization time.
- Heavy flavor shows large sensitivity to $\tau_0 \implies$ to be further tested by the upcoming high luminosity measurements.
- v_2 more sensitive to τ_0 than R_{AA} we explained this sensitivity.
- All this demonstrates synergy of low- and high- p_{\perp} QGP physics, supporting our QGP tomography approach.

ACKNOWLEDGEMENTS

The speaker has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 725741)