QGP TOMOGRAPHY: INFERRING BULK MEDIUM PROPERTIES FROM HIGH p_{\perp} DATA STEFAN STOJKU, INSTITUTE OF PHYSICS BELGRADE IN COLLABORATION WITH: MAGDALENA DJORDJEVIC, JUSSI AUVINEN, MARKO DJORDJEVIC AND PASI HUOVINEN ■ Bulk properties of QGP - traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision). - Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision). - Rare high energy particles traversing QCD medium excellent probe of QGP properties. - Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision). - Rare high energy particles traversing QCD medium excellent probe of QGP properties. - High energy particles: - Are produced only during the initial stage of QCD matter - Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision). - Rare high energy particles traversing QCD medium excellent probe of QGP properties. - High energy particles: - Are produced only during the initial stage of QCD matter - Significantly interact with the QCD medium - Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision). - Rare high energy particles traversing QCD medium excellent probe of QGP properties. - High energy particles: - Are produced only during the initial stage of QCD matter - Significantly interact with the QCD medium - ► Perturbative calculations are possible - Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision). - Rare high energy particles traversing QCD medium excellent probe of QGP properties. - High energy particles: - Are produced only during the initial stage of QCD matter - Significantly interact with the QCD medium - ► Perturbative calculations are possible - Theoretical predictions can be compared with a wide range of experimental data. - Bulk properties of QGP traditionally explored with low- p_{\perp} particles (99.9% of particles formed in a heavy-ion collision). - Rare high energy particles traversing QCD medium excellent probe of QGP properties. - High energy particles: - Are produced only during the initial stage of QCD matter - Significantly interact with the QCD medium - ► Perturbative calculations are possible - Theoretical predictions can be compared with a wide range of experimental data. - Our state-of-the-art dynamical energy loss formalism is embedded in DREENA-A framework ■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP. ■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP. ■ High energy particles lose energy when they traverse QGP. ■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP. - High energy particles lose energy when they traverse QGP. - This energy loss is sensitive to QGP properties. ■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP. - High energy particles lose energy when they traverse QGP. - This energy loss is sensitive to QGP properties. - DREENA can realistically predict this energy loss. ■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP. - High energy particles lose energy when they traverse QGP. - This energy loss is sensitive to QGP properties. - DREENA can realistically predict this energy loss. - High- p_{\perp} probes are excellent tomoraphy tools. - We can use them to infer some of the bulk QGP properties. # How to constrain QGP THERMALIZATION TIME USING HIGH- p_{\perp} Data? ■ The dynamics before thermalization time τ_0 not established (applicability of hydrodynamics, energy loss phenomena) - The dynamics before thermalization time τ_0 not established (applicability of hydrodynamics, energy loss phenomena) - Therefore, τ_0 is an important parameter affects evolution of the system, as well as interactions of high p_{\perp} particles with the medium - The dynamics before thermalization time τ_0 not established (applicability of hydrodynamics, energy loss phenomena) - Therefore, τ_0 is an important parameter affects evolution of the system, as well as interactions of high p_{\perp} particles with the medium - lacktriangle Conventional hydrodynamics approach: vary au_0 and compare obtained distributions with data - The dynamics before thermalization time τ_0 not established (applicability of hydrodynamics, energy loss phenomena) - Therefore, τ_0 is an important parameter affects evolution of the system, as well as interactions of high p_{\perp} particles with the medium - lacktriangle Conventional hydrodynamics approach: vary au_0 and compare obtained distributions with data - An analysis employing Bayesian statistics has shown that low p_{\perp} data provides only weak limits to the thermalization time: $\tau_0 = 0.59 \pm 0.41 fm/c$, with 90% credibility - Further constraints would be useful. ■ We here analyze how high p_{\perp} observables R_{AA} and v_2 depend on the QGP thermalization time τ_0 - We here analyze how high p_{\perp} observables R_{AA} and v_2 depend on the QGP thermalization time τ_0 - We assume free streaming of high p_{\perp} particles before thermalization and neglect pre-equilibrium evolution of the medium. - We here analyze how high p_{\perp} observables R_{AA} and v_2 depend on the QGP thermalization time τ_0 - We assume free streaming of high p_{\perp} particles before thermalization and neglect pre-equilibrium evolution of the medium. - After τ_0 , medium is described as a relativistic viscous fluid. - We here analyze how high p_{\perp} observables R_{AA} and v_2 depend on the QGP thermalization time τ_0 - We assume free streaming of high p_{\perp} particles before thermalization and neglect pre-equilibrium evolution of the medium. - After τ_0 , medium is described as a relativistic viscous fluid. - High p_{\perp} particles start to lose energy through the interactions with the medium. ■ When calculating how the high p_{\perp} observables depend on τ_0 , one has to first make sure that QGP medium evolution is compatible with the observed distributions of low p_{\perp} particles. - When calculating how the high p_{\perp} observables depend on τ_0 , one has to first make sure that QGP medium evolution is compatible with the observed distributions of low p_{\perp} particles. - We describe the medium using 3+1D viscous hydrodynamical model E. Molnar, H. Holopainen, P. Huovinen and H. Niemi, Phys. Rev. C90, 044904 (2014). - When calculating how the high p_{\perp} observables depend on τ_0 , one has to first make sure that QGP medium evolution is compatible with the observed distributions of low p_{\perp} particles. - We describe the medium using 3+1D viscous hydrodynamical model E. Molnar, H. Holopainen, P. Huovinen and H. Niemi, Phys. Rev. C90, 044904 (2014). ■ We ignore pre-equilibrium evolution and set a constant $\eta/\mathrm{s} = \mathrm{0.12}$ - When calculating how the high p_{\perp} observables depend on τ_0 , one has to first make sure that QGP medium evolution is compatible with the observed distributions of low p_{\perp} particles. - We describe the medium using 3+1D viscous hydrodynamical model E. Molnar, H. Holopainen, P. Huovinen and H. Niemi, Phys. Rev. C90, 044904 (2014). - We ignore pre-equilibrium evolution and set a constant $\eta/\mathrm{s} = \mathrm{0.12}$ - Model parameters are tuned for each τ_0 to match observed charged particle multiplicities and low p_{\perp} v_2 in Pb + Pb collisions at $\sqrt{s_{NN}} = 5.01$ TeV. ■ Bass et al. (2017) showed that comparison of relativistic hydrodynamics with low p_{\perp} data is insensitive to a wide range of thermalization times (0.2 $fm < \tau_0 <$ 1.2fm) 6 | 1 - Bass *et al.* (2017) showed that comparison of relativistic hydrodynamics with low p_{\perp} data is insensitive to a wide range of thermalization times (0.2 $fm < \tau_0 < 1.2fm$) - Independently confirmed by our systematic analysis: 3+1D viscous hydrodynamics model run with six different thermalization times: S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] - Bass *et al.* (2017) showed that comparison of relativistic hydrodynamics with low p_{\perp} data is insensitive to a wide range of thermalization times (0.2 $fm < \tau_0 < 1.2fm$) - Independently confirmed by our systematic analysis: 3+1D viscous hydrodynamics model run with six different thermalization times: S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] $\begin{array}{c} 70 = 0.2 \, \mathrm{fm} \\ 70 = 0.4 \, \mathrm{fm} \\ 70 = 0.6 \, \mathrm{fm} \\ 70 = 0.8 \, \mathrm{fm} \\ 70 = 1.0 \, \mathrm{fm} \\ 70 = 1.0 \, \mathrm{fm} \\ 70 = 1.2 \mathrm{fm}$ ■ Good agreement with low p_{\perp} data confirms low sensitivity to τ_0 . - Bass et al. (2017) showed that comparison of relativistic hydrodynamics with low p_{\perp} data is insensitive to a wide range of thermalization times (0.2 $fm < \tau_0 <$ 1.2fm) - Independently confirmed by our systematic analysis: 3+1D viscous hydrodynamics model run with six different thermalization times: S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] $\begin{array}{c} \tau_0 = 0.2 \text{ fm} \\ \tau_0 = 0.4 \text{ fm} \\ \tau_0 = 0.4 \text{ fm} \\ \tau_0 = 0.6 \text{ fm} \\ \tau_0 = 0.6 \text{ fm} \\ \tau_0 = 0.8 \text{ fm} \\ \tau_0 = 0.8 \text{ fm} \\ \tau_0 = 1.0 \text{ fm} \\ \tau_0 = 1.2 \text{ fm} \\ \lambda LICE \\ (0.5)\% \times 10 \\ (0.5)\% \times 10 \\ (0.5)\% \times 10 \\ (0.5)\% \times 10 \\ (0.50)\% \times 0.5 0$ p_T [GeV] - Good agreement with low p_{\perp} data confirms low sensitivity to τ_0 . - Can this indeterminancy be further constrained through high p_⊥ theory and data? ■ Next step: use DREENA-A to generate high p_{\perp} data for all τ_0 (charged hadrons, $Pb + Pb @ \sqrt{s_{NN}} = 5.01 \text{ TeV}$) S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] ■ Next step: use DREENA-A to generate high p_{\perp} data for all τ_0 (charged hadrons, $Pb + Pb \otimes \sqrt{s_{NN}} = 5.01 \text{ TeV}$) S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] ■ Low $p_{\perp}v_2$ is completely insensitive to different τ_0 . ■ Next step: use DREENA-A to generate high p_{\perp} data for all $\tau_{\rm O}$ (charged hadrons, Pb + Pb @ $\sqrt{s_{\rm NN}} = 5.01$ TeV) S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] - Low $p_{\perp}v_2$ is completely insensitive to different τ_0 . - On the other hand, high p_{\perp} predictions can clearly be resolved against experimental data. ■ Next step: use DREENA-A to generate high p_{\perp} data for all τ_0 (charged hadrons, Pb + Pb @ $\sqrt{s_{NN}} = 5.01$ TeV) - Low $p_{\perp}v_2$ is completely insensitive to different τ_0 . - On the other hand, high p_{\perp} predictions can clearly be resolved against experimental data. - Later thermalization time is clearly preferred by R_{AA} and v_2 . 1 p.(GeV) Next step: use DREENA-A to generate high p_{\perp} data for all τ_0 (charged hadrons, Pb + Pb @ $\sqrt{s_{NN}} = 5.01$ TeV) - Low $p_{\perp}v_2$ is completely insensitive to different τ_0 . - On the other hand, high p_{\perp} predictions can clearly be resolved against experimental data. - Later thermalization time is clearly preferred by R_{AA} and v_2 . - Resolution increases for higher centrality. # Heavy Flavor High p_{\perp} Results for Various $au_{ m o}$ ■ DREENA-A predictions for D mesons (full curves) and B mesons (dashed curves), Pb + Pb @ √s_{NN} = 5.01 TeV S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] # Heavy Flavor High p_{\perp} Results for Various $au_{ m O}$ ■ DREENA-A predictions for D mesons (full curves) and B mesons (dashed curves), Pb + Pb @ √s_{NN} = 5.01 TeV s. Stoiku, J. Auvinen, M. Diordievic, P. Huovinen and M. Diordievic, arXiv:2008.08987 [nucl-th] - D meson: ALICE (red triangles), CMS (blue squares) - B meson: CMS non-prompt J/ψ (green circles) # Heavy Flavor High p_{\perp} Results for Various $au_{ m o}$ DREENA-A predictions for D mesons (full curves) and B mesons (dashed curves), $Pb + Pb \ @ \sqrt{s_{NN}} = 5.01 \text{ TeV}$ S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] - D meson: ALICE (red triangles), CMS (blue squares) - B meson: CMS non-prompt J/ψ (green circles) - Heavy quarks are even more sensitive to τ_0 . # Heavy Flavor High p_{\perp} Results for Various $au_{ m O}$ ■ DREENA-A predictions for D mesons (full curves) and B mesons (dashed curves), Pb + Pb @ √s_{NN} = 5.01 TeV s. Stoiku, J. Auvinen, M. Diordievic, P. Huovinen and M. Diordievic, arXiv:2008.08987 [nucl-th] - D meson: ALICE (red triangles), CMS (blue squares) - B meson: CMS non-prompt J/ψ (green circles) - Heavy quarks are even more sensitive to τ_0 . - Available data suggests that later thermalization time is preferred. ■ What if jet quenching starts later than QGP thermalization time (and subsequent medium evolution) τ_0 ? - What if jet quenching starts later than QGP thermalization time (and subsequent medium evolution) τ_0 ? - lacktriangle To test this scenario, we introduce quenching time $au_{oldsymbol{q}} \geq au_{oldsymbol{O}}$ 9 | 13 - What if jet quenching starts later than QGP thermalization time (and subsequent medium evolution) τ_0 ? - lacktriangle To test this scenario, we introduce quenching time $au_{oldsymbol{q}} \geq au_{oldsymbol{Q}}$ - DREENA-A results generated on a temperature profile with $\tau_0 = 0.2$ fm, but τ_q in the range of = 0.2-1.2fm: S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] - What if jet quenching starts later than QGP thermalization time (and subsequent medium evolution) τ_0 ? - \blacksquare To test this scenario, we introduce quenching time $\tau_{\mathbf{q}} \geq \tau_{\mathbf{0}}$ - DREENA-A results generated on a temperature profile with $\tau_0 = 0.2$ fm, but τ_q in the range of = 0.2-1.2fm: S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] ■ v_2 surprisingly insensitive to τ_q ! ■ ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q) - \blacksquare ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q) - We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = \mathbf{o})$ and out-of-plane $(\phi = \pi/2)$ directions for various $\tau_{\mathbf{O}}$ S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] - ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q) - We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] - ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q) - We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] ■ As τ_0 increases \implies the difference between average in-plane and out-of-plane temperatures increases - ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q) - We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] - As τ_0 increases \implies the difference between average in-plane and out-of-plane temperatures increases - Recall that $v_2 \approx \frac{1}{2} \frac{R_{AA}^{in} R_{AA}^{out}}{R_{AA}^{in} + R_{AA}^{out}}$ - ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q) - We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] - As τ_0 increases \Longrightarrow the difference between average in-plane and out-of-plane temperatures increases - lacksquare Recall that $v_2 pprox rac{1}{2} rac{R_{AA}^{in} R_{AA}^{out}}{R_{AA}^{in} + R_{AA}^{out}}$ ■ Explains the observed dependence of v_2 on τ_0 . - \blacksquare ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q) - We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] ■ The difference between Ts is larger in more peripheral collisions \implies explains higher sensitivity of v_2 to τ_0 . - \blacksquare ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_a) - We evaluated the average temperatures that partons experience while traversing the medium in the in-plane $(\phi = 0)$ and out-of-plane $(\phi = \pi/2)$ directions for various τ_0 S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th] - The difference between Ts is larger in more peripheral collisions \implies explains higher sensitivity of v_2 to τ_0 . - Larger τ_0 have lower overall avg T ⇒ explains behaviour of $R_{\Delta\Delta}$. ■ We presented (to our knowledge) the first example of using of high p_{\perp} theory and data to constrain a parameter weakly sensitive to bulk medium evolution - We presented (to our knowledge) the first example of using of high p theory and data to constrain a parameter weakly sensitive to bulk medium evolution - By calculating high p_{\perp} R_{AA} and v_2 within our DREENA-A framework we demonstrated that experimental data favors later OGP thermalization time. - We presented (to our knowledge) the first example of using of high p_{\perp} theory and data to constrain a parameter weakly sensitive to bulk medium evolution - By calculating high p_{\perp} R_{AA} and v_2 within our DREENA-A framework we demonstrated that experimental data favors later QGP thermalization time. - Heavy flavor shows large sensitivity to $\tau_0 \implies$ to be further tested by the upcoming high luminosity measurements. - We presented (to our knowledge) the first example of using of high p_{\perp} theory and data to constrain a parameter weakly sensitive to bulk medium evolution - By calculating high p_{\perp} R_{AA} and v_2 within our DREENA-A framework we demonstrated that experimental data favors later QGP thermalization time. - Heavy flavor shows large sensitivity to $\tau_0 \implies$ to be further tested by the upcoming high luminosity measurements. - v_2 more sensitive to τ_0 than R_{AA} we explained this sensitivity. - We presented (to our knowledge) the first example of using of high p_{\perp} theory and data to constrain a parameter weakly sensitive to bulk medium evolution - By calculating high p_{\perp} R_{AA} and v_2 within our DREENA-A framework we demonstrated that experimental data favors later QGP thermalization time. - Heavy flavor shows large sensitivity to $\tau_0 \implies$ to be further tested by the upcoming high luminosity measurements. - v_2 more sensitive to τ_0 than R_{AA} we explained this sensitivity. - All this demonstrates synergy of low- and high- p_{\perp} QGP physics, supporting our QGP tomography approach. #### **ACKNOWLEDGEMENTS** The speaker has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 725741)