Radiation reaction: charge distributions or point charges?

Peter Ván¹ and Tamás Matolcsi²

Zimányi School, Budapest, 11.12.2020.

What is radiation reaction?

- Classical problem of electrodynamics. Lorentz, 1892, 27 years after Maxwell equations, 5 years before electron.
- Accelerating charges radiate, radiated fields make accelerate.
- Field-matter interaction.
- Lorentz-Abraham-Dirac equation :

$$m\dot{u}^{\mu}=-eF^{\mu
u}_{ext}u_{
u}-rac{2lpha}{3}(\ddot{u}^{\mu}+\dot{u}^{
u}\dot{u}_{
u}u^{\mu})$$

Coupled Maxwell-Newton equations. Special relativistic. $c = 1, \alpha = 1/137, \eta^{\mu\nu} = diag(-1,1,1,1).$

• It is fundamental for accelerator design. New experiments.

Is it a problem or not?

- Mathematical? Runaway solutions, but not only.
- Conceptual? Infinite energies. Point charges?
- Lorentz, Abraham, Dirac, Born, Feynmann, Landau, ..., Wald, Rafelski, ...

What is the problem?

 $\mathsf{Maxwell}{+}\mathsf{Newton} \to \mathsf{Lorentz}{-}\mathsf{Abraham}{-}\mathsf{Dirac}\ \mathsf{equation}$

Electrodynamics is not about interaction

Given electromagnetic field \rightarrow particle motion. Given worldline of a charged particle \rightarrow electromagnetic field. Maxwell equations are not interpreted along the wordline of a point charge.

Various strategies :

- Wrong interpretation of the LAD equation. E.g. Dirac particular solutions. Spohn - second order kernel.
- 2 Problems with Maxwell equations. E.g. Born-Infeld. Feynmann.
- Problems with Newton equation. Dissipative forces. Landau-Lifshitz, Sokolov. New experiments.
- Problems with point charges. Infinite energy. Various regularisations, charge distributions. Lorentz-Abraham-Dirac equation follows.
- ⑤ Problems with classical approach. Quantum electrodynamics. Statistical physics.

From continuum to point

Bild-Deckert-Ruhl, Phys. Rev. D, 99:096001, 2019.

- Dirac's derivation of LAD equation: unjustified Gauss-Stokes theorem, Taylor expansion, limit to a point.
- Rigid spherical shell, radius ϵ , uniform continuous charge distribution. Lorentz, Abraham, Dirac, Parrott.
- Improved equation of motion with time delay ϵ .

Basic assumption: the electromagnetic fields outside the world tube of the shell and the point charge at the centre are equal. We have shown (Matolcsi–PV, arXiv:2010.04940) that

- (1) the world tube breaks down for accelerations higher than $1/\epsilon$,
- 2 the basic assumption is not valid, proved for uniformly accelerated rigid spherical shell by Distribution Theory.

Frame independent short calculation. Uniformly accelerated charged sphere – world tube. A surface charge density – vector measure. The related potential - a Distribution - cannot be equal by the potential of any effective point charge at the centre.

distribution and Distribution

x spacetime event, φ test function, Distributions: function space duals, Charge distributions are Distributions.

		Distribution
measure λ	\rightarrow	$(\lambda arphi) := \int arphi(x) d\lambda(x)$
locally integrable function <i>f</i>	\rightarrow	$(f \varphi) := \int f(x)\varphi(x)dx$
locally non-integrable function f	\rightarrow	pole taming!

- Dirac measure: $\phi(0) = \int \varphi(x) d\delta(x) \left(= \int \varphi(x) d\delta(x)\right)$, (Dirac, 1930).
- non-integrable function: $\frac{1}{|x|^m}$, $2 < m \in \mathbb{N}$.

• pole taming:
$$\left(tm\frac{1}{|x|^m}|\varphi\right) := \int \frac{\varphi(x) - T_{\varphi}^{m-1}(x)}{|x|^m} dx.$$

Electromagnetic potential, field, energy-momentum are best represented by Distributions.

see e.g. Horváth: Topological vector spaces and distributions, 2012.

Electrostatic energies (e.g. Jackson)

 ρ charge density, ϕ electrostatic potential, ${\bf E}$ electric field

$$\rho\phi = (\nabla \cdot \mathbf{E})\phi = \nabla \cdot (\phi \mathbf{E}) - \mathbf{E} \cdot \nabla \phi = \nabla \cdot (\phi \mathbf{E}) + |\mathbf{E}|^2.$$
$$\nabla \cdot \mathbf{E} = \rho, \quad \mathbf{E} = -\nabla \phi$$

Total (self?) energy:

$$\frac{1}{2}\int\rho\phi=\frac{1}{2}\int|\mathbf{E}|^2$$

Electric energy density:

$$w = \frac{1}{2} |\mathbf{E}|^2$$

For a point charge *e* at zero:

$$\phi(\mathbf{x}) = \frac{e}{4\pi |\mathbf{x}|}, \qquad w_{pch}(\mathbf{x}) = \frac{1}{32\pi^2} \frac{e^2}{|\mathbf{x}|^4}$$

Electrostatic point charge quantities

(self)Energy density :

$$w = \frac{1}{2} |\mathbf{E}|^2$$

(self)Energy:

$$W = \left(tm \frac{|\mathbf{E}|^2}{2} \, \Big| \, 1 \right) = 0, \qquad \left(\int \frac{|\mathbf{E}|^2}{2} = \infty \right)$$

It is not locally integrable, it is a Distribution. (self)Pressure tensor field:

$$\mathsf{P} := \mathsf{E} \otimes \mathsf{E} - \frac{|\mathsf{E}|^2}{2}$$

It is not locally integrable, it is a Distribution. (self)Force density: $\mathbf{f} := \nabla \cdot \mathbf{P}$.

$$\nabla \cdot (tm \mathbf{P}) = \mathbf{0} \qquad (\nabla \cdot \mathbf{P} = \rho \mathbf{E})$$

Electrodynamic point charge quantities

world line function: r^{μ} proper time \rightarrow flat spacetime world line: *Ran* r^{μ} (one dimensional submanifold) The Liénard-Wiechert (four)potential of a given (!) r^{μ} :

$$\phi^{\mu}_{LW}(x) = \frac{e}{4\pi} \frac{-\dot{r}^{\mu}(t_r(x))}{(x^{\nu} - r^{\nu}(t_r(x)))\dot{r}_{\nu}(t_r(x))}$$

Here $t_r(x)$ is the retarted proper time $(x^{\mu} - r^{\mu}(t_r(x)))$ is future-lightlike) The electromagnetic field, $F^{\mu\nu} = \partial^{\nu}\phi^{\mu} - \partial^{\mu}\phi^{\nu}$ and the energy-momentum:

$$T^{\mu\nu} = -F^{\mu\kappa}F^{\nu}_{\kappa} + \frac{1}{2}F^{\gamma\kappa}F_{\kappa\gamma}g^{\mu\nu}$$

- *T^{µν}* is not locally integrable,
- *T^{µν}* is not differentiable on the world line,
- $T^{\mu\nu}$ has a pole in radial distance along the world line.

$$\partial_{\nu}(tmT^{\mu\nu}) = \frac{2}{3} \frac{e^2}{4\pi} \dot{r}^{[\mu \ \dot{r}^{\nu}]} \dot{r}_{\nu} \lambda_{Ranr} = -\frac{2\alpha}{3} (\ddot{u}^{\mu} + \dot{u}^{\nu} \dot{u}_{\nu} u^{\mu}) \lambda_{Ranr}, \quad u^{\mu} := \dot{r}^{\mu}.$$

rItax

Lorentz-Abraham-Dirac equation (?)

Self-force :

$$\partial_{\nu}(tmT^{\mu\nu}) = \frac{2}{3} \frac{e^2}{4\pi} \dot{r}^{[\mu \, \dot{r}^{,\nu}]} \dot{r}_{\nu} \lambda_{Ranr} = -\frac{2\alpha}{3} (\ddot{u}^{\mu} + \dot{u}^{\nu} \dot{u}_{\nu} u^{\mu})$$

Therefore it seems reasonable to put together Newton equation with two different kind of electromagnetic forces like this

$$m\dot{u}^{\mu}=F_{\rm ext}^{\mu\nu}u_{\nu}-\frac{2\alpha}{3}(\ddot{u}^{\mu}+\dot{u}^{\nu}\dot{u}_{\nu}u^{\mu}).$$

However,

it is NOT a differential equation.

(Is is not even an equation.)

Lorentz-Abraham-Dirac formula

LAD:

$$\boxed{m\dot{u}^{\mu}=F_{ext}^{\mu\nu}u_{\nu}}+\boxed{\frac{2\alpha}{3}(\ddot{u}^{\mu}+\dot{u}^{\nu}\dot{u}_{\nu}u^{\mu})}.$$

Newton equation: $m\ddot{r} = f(r, \dot{r}) \rightarrow r(t)$ Liénard-Wiechert potential: GIVEN a world line one calculates the fields.

A differential equation is a definition, it is not.

A possible interpretations:

- First correction : Landau-Lifshitz
- Landau-Lifshitz is a hidden submanifold: Spohn
- A self consistent procedure? (see Matolcsi-Fülöp-Weiner, MPL 2017.)

Does continuum better?

ho charge density, ϕ electrostatic potential, **E** electric field

$$\begin{split} \rho\phi &= (\nabla \cdot \mathbf{E})\phi = \nabla \cdot (\phi \mathbf{E}) - \mathbf{E} \cdot \nabla \phi = \nabla \cdot (\phi \mathbf{E}) + |\mathbf{E}|^2.\\ \nabla \cdot \mathbf{E} &= \rho, \quad \mathbf{E} = -\nabla \phi \end{split}$$

Previous -usual- conclusion (e.g. Jackson):

$$\frac{1}{2}\int\rho\phi=\frac{1}{2}\int|\mathbf{E}|^2\quad\overset{?}{\Rightarrow}\quad w=\frac{1}{2}\rho\phi\overset{?}{=}\frac{1}{2}|\mathbf{E}|^2$$

Energy and energy density of continuum charge distributions? Problems:

- Positive-negative charges?
- Different domains.
- Self or extraneous?

$$w_{ext} = \rho \phi_{ext}, \qquad w_{self} = \frac{1}{2} \rho \phi_{self}$$

See also the recent seminar of Tamás Matolcsi.

Summary

- Radiation reaction: physical and mathematical problems
- Continuum to point is problematic. Bild-Decker-Ruhl (2019)
- The problem is not with point charges (wild Distributions can be tamed)
- Lorentz-Abraham-Dirac is not an equation for defining the possible world lines
- Self and extraneous fields?

Electrodynamics is not about interaction

Given electromagnetic field \rightarrow motion of charge distribution. Given charge distribution flow \rightarrow electromagnetic field.

Other strategies?? QED? Quantum? Renormalisation?

Thank you for the attention!

About the importance of this kind of porblems

I mean old, simple looking, out of fashion ones, that somehow are annoying. There are two singular opinions:

- Importance = 0. We know much more. It is just mathematics....
- Importance $= \infty$. Physics is meaningless. End of world.

Height: 109m Al, what do you think?