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Introduction - The phase diagram of Q

Different phases of QCD matter (in equilibrium) are depicted in (temperature vs

baryo-chemical potential) phase diagram

e FBarly Universe-like conditions at up =0
(matter-anti-matter symmetry)

e At T ~0 and pup ~ 922 MeV sits “ordinary
nuclear matter” (e.g. a proton), while at
much larger pp might sit neutron stars
(cores)

e Transition form hadron gas to QGP at
pup = 0 is a smooth crossover at
T ~ 155 — 160 MeV

e At larger up, the transition is believed to
become of first order — critical point

Temperature (MeV)

300

250

200

150

100

50

Quark-Gluon Plasma

i

= ,

E ETo)

I‘de

E Critical rpﬁese

E Point? 7/“;%

C 6‘/;..

= ©\ Color

C Nuclear

E Ve NS “~ Superconductor
N P R PO Py e

0 200 400 600 800 1000 1200 1400 1600

Baryon Chemical Potential - pug(MeV)

1/24



Study of the QCD phase diagram

Theoretical investigation of the phase diagram make use of different methods and tools
From first principles:
e Lattice QCD

e Perturbation theory
e Functional methods (functional renormalization group - FRG, Dyson-Schwinger
equations, etc...)
Models:
e Nambu-Jona-Lasinio (NJL) —type models (Nambu and Jona-Lasinio, Phys. Rev. 122
(1961) 345, Phys. Rev. 124 (1961) 246)

e Hadron Resonance Gas (HRG) -type models (Hagedorn, Nuovo Cim. Suppl. 3 (1965),
147)
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Thermodynamic description of QCD

Thermodynamics of QCD is commonly investigated in grancanonical ensemble

Z=) ZyetN
N

¢ Equation of State (EoS) is extremely important since it completely describes the

equilibrium properties of QCD matter
e One of the main inputs to hydro and several other tools for calculations in heavy-ion

collisions and higher-density physics.
e Thermodynamic quantities follow directly from the grancanonical partition function Z

and the relation:

—kgTInZ=U-TS — uN
e Pressure: p = kaTO(I;“/Z ¢ Energy density:

e=Ts—p+)_, pin;

e Entropy density: s = (g—p) .

e Speed of sound: ¢? = (%)S/nB

e Charge densities: n; = (;—) .
Topjsti e More (Fluctuations, etc...) /
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EoS at up =0

A combination of methods gives us good understanding of the EoS at up = 0 at all

temperatures
] T T T T T T
5' = lattice continuum limit SB
e Perturbative QCD at high temperature
— “pure quark-gluon phase” al pmemTIEITIT "]

e Hadron Resonance Gas (HRG) model at low = 3_
temperature 2

— “pure hadron phase” .
HTLNNLO ----- L

HRG ———

e Lattice QCD bridges between regimes

and captures the transition 0

1 L 1 L 1 1
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WB: Borsdnyi et al., PLB 370 (2014) 99-104
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Lattice QCD: equation of state at up =0

e EoS at vanishing chemical potential known to high precision for a few years now
(continuum limit, physical quark masses)
e Great agreement between different collaborations
= Systematics are well under control and results are extremely reliable
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Lattice QCD at finite up

Lattice QCD suffers from the sign problem at finite chemical potential

e Taylor expansion around pup = 0

p(T, pB - ©p\ 2" 1
% = (D) (7) o al(T) = mxff(T, pp = 0)

n=0
e Analytical continuation from imaginary up

e Other methods to work around the sign problem still in exploratory stages
e Reweighting techniques
e Complex Langevin
e Lefschetz thimbles

e The equation of state: lattice results for the Taylor coefficients are currently
available up to O( %) , but the reach is still limited to fip < 2 — 2.5 despite great
computational effort (WB: Borsanyi et al. JHEP 10 (2018) 205, HotQCD: Bazavov et al.
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Lattice QCD at finite up - Taylor coefficients
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Lattice QCD at finite up - Taylor expansion

e Thermodynamic quantities at large chemical potential become problematic

e Higher orders do not help with the convergence of the series
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e Inherent problem with Taylor expansion: carried out at 7" = const. This doesn’t cope
well with [ip—dependent transition temperaure

e Can we find an alternative expansion to improve finite- i behavior?
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An alternative approach

From simulations at imaginary pup we observe that x2(T, fip) at (imaginary) fip appears
to be differing from xZ(7,0) mostly by a shift in 7"

x2(T, fip)

B / / ~2
_ = T7,0), T=T(1l+k
A5 X2 ( ) ( NB)

e More apparent close to the transition a0 T T T T
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e
e We don’t need EoS from lattice at high-T 0.1 Jm e ]
005 (25«7 |
e We extend the formalism of ”lines of ¥ preliminary
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Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function f(T") which shifts with [, with a simple
T-independent shifting parameter x. How does Taylor cope with it?

(T, ) = £(T7,0) T = T(1+xp?)
We fitted f(T,0) = a + barctan(c(T — d)) to xZ(T,0) data for a 48 x 12 lattice
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Taylor expanding a sigmoid

e The Taylor expansion seems to have problems reproducing the original function (left)

e A similar picture arises from actual lattice data (right)
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e Problems at 71" slightly larger than 7). = influence from structure in & and xZ
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An alternative approach

We also notice that a very similar scenario appears for:
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e We have observed the f[ip-dependence seems to amout to a simple T-shift

e However, a simplistic scenario with a single T- independent parameter x cannot be
sufficient, hence we seek a systematic treatment which can serve as an alternative to
Taylor expansion

e We allow for more than O( %) expansion of 7" and letting the coefficients be
T—dependent:
XlB (T ﬂB)
iig
e Important: we are simply re-organizing the Taylor expansion via an expansion of the
shift

=xZ(T',0), T =T (1+re(T) i + ka(T) i + O(ii%))

AT =T —T' = (ra(T) i% + ra(T) iy + O( %))

HotQCD: Bazavov et al. PRD 95 (2017) 054504
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1. With a Taylor expansion one has:

XlB (Tv /:LB)

1 1 .
- = X2 (T,0) + X7 (T,0) 4% + 5x¢ (T, 0) iip + O( %)
UB 3! !

2. On the other hand, with an expansion in AT =T — T’ one can write:

XB(T, i d d* ,
M ) (ﬂ;“B) =x§(T,0)+ ATL + - LAt 22+ O(AT?) =
d)(g R T2 d X2 dXZ S NG
_ . B 2 6
=B @0 + T2 i 1 [T D 1 1) 22| i+ 0(a)

since AT =T (rk2(T) i + ka(T) ).
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Equating same-order terms in the previous expansions one can easily show that:

_ 1 X2
0 =5 )
RalT) = ———— (38 (1) X (1) — 55" (O (7))

360x5 (T)

e The procedure can in principle be carried over systematically
e Higher order terms still suffer from cancellations and can be challenging
e However we can exploit imaginary- jip simulations to extract x,,(T)
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Similar relations can be derived analogously from:

S
X X X
ﬁ(T’ /J'B) = XlBls(T/a 0) ) XQS(T’ /‘B) = Xg(T/v O)

yielding:

1 BS(T) 1 BS(T)

BST:7X31 ST:7X22
0 = e g ) =)= o
1 / 2 1 / 2

RPHT) = ———— (3 () X (D) RE(T) = —— (8 (@) XB (1)

360xB5'(T) 24x5 (T)

—5xi (TG (T)?) —3x3" (T (1))
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Determine x,

I. Directly determine ko(T") at fip = 0 from:

I1I.

I1I1.

IV.

1 X2 (D)
/
6T xB'(T)

) (T) =

From our imaginary- fip simulations (fig = fis = 0) we calculate:

T -T

T T ka(T) + wa(T) ps + O(fip) = K(T)

Calculate the quantity K (T, N., i%) for several % and for N, = 8,10, 12

Perform a combined fit of the % and 1/N? dependence of K (T)) at each temperature,
yielding a continuum estimate for the coefficients

= The O(1) and O( i%) coefficients of the fit are k2(T) and r4(T)
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Systematics

For an analysis of the systematic uncertainties, we consider:

e 2x scale settings
e 2x choices of [ip fitting range (fip = inmw/8 with n € {0,3 —5} or n € {0,3 — 6} )
e 3x fit functions. Always linear in 1/N2, and linear, parabolic or 1/linear in %

e 2x splines at fip =0

for a total of 24x analyses for each T'.

At each temperature, the 24x analyses are combined with Akaike weights.
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From the results we can tell our initial guess was not far-off:

e ro(T') does not vary much over a large T-range
e r4(T) is indeed very small
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A similar picture appears for x,, describing the shift in x2° and x5
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Thermodynamics at finite (real) up

Thermodynamic quantities at finite (real) pp can be reconstruted from the same ansazt:

np (T7 ﬂB)
T3

with T/ = T(1 + ro(T) i3 + ka(T) i4).

= X2B (T/7 O)

From the baryon density ng one finds the pressure:

& iB N
0

™ T4 T3

then the entropy, energy density:

s(T, ps) _ ,p(T, i) op(T, i) . np(T, [ip)
e 4 T _ :
T+ T4t or |, "7 T
eT, pp) _ s(T, i) p(T, og) | . ns(T, iB)
T4 T3 = T* W8
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Thermodynamics at finite (real) up

For our extrapolation at finite (real) chemical potential we use:

e Continuum extrapolated pressure and entropy density at fip = 0
(from Borsanyi et al. PLB 730 (2014) 99)
e Continuum xZ(7T) at fip = 0 (from Bellwied et al. PRD 92 (2015) 114505)
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Thermodynamics at finite (real) up

e Including k4(T) results in added error, but doesn’t affect the results sensibly
e In any case, errors are under control up to fip ~ 3.5

e At the level of the pressure, errors are extremely small (unsurprinsignly)
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Thermodynamics at finite (real) up

e Including k4(T) results in added error, but doesn’t affect the results sensibly
e In any case, errors are under control up to jp ~ 3.5

e Quantities more sensitive to the T-dependence like the entropy still show a signal at
very large [ip

14 b K4=0 i 14 L Kq#0 i
E !!
12+ S HTILE 12 | sEresafigal® -
!! B -iig 3 = ,;z‘
N SErH 1L 1 10 f TEH 1L |
S 3ga8A0 S EHE L
= gl !! !:!;3 i - 8l II :!!5 4
= frizis® [ jiiziss
@ 6 | 3 !!t§l ’—‘ugﬁf857 @ 6k I !!til P—‘}laﬁf057
33,21 —— ey Jizizt —— ey
T L ngT=15 I..;,’I ngT=15
421231 ——igT=2 4 4:E31 ——ugT=2
-.-:: i =25 r:: HET =25
2 L 1 EE/Tiss 2+ I ﬂg/Tiss—
preliminary prellmlnary
O | | | | | 0 | | | |
120 140 160 180 200 220 240 120 140 160 180 200 220 240
T [MeV] T [MeV]

23/24



Thermodynamics at finite (real) up

e Including k4(T) results in added error, but doesn’t affect the results sensibly
e In any case, errors are under control up to jp ~ 3.5

e Quantities more sensitive to the T-dependence like the entropy still show a signal at
very large [ip

16 [ K =0 d 16 [ ) d
14 | . 14 | .
z
12 L 1 12 gEET i
£ =3 %] RE =zl
c 10} . a*TczizEEEe £ 10 i g fozizEEie
o !! = l'i" v Ii = !=;z=
= 8 3 sEzaf®” 9 = 8 3 S rH L 1
® i 5t 1 ——t 1gT=0 © { s¥::27 ——i 1g/T=0
6 s 3 iz pg/T =05 6 I 3 3] pg/T=05
3 ,§1 F——i pg/T =1 ; 3 ,iz F——i pg/T =1
411 I fT '_HEB{TF;;S 4altiizft ,_._.ﬂB/fo;;s
pgil b =25 i:il o= 25
2t preliminary T35 ] 2r preliminary T35 ]
O Il Il Il Il Il 0 Il Il Il Il Il
120 140 160 180 200 220 240 120 140 160 180 200 220 240
T [MeV] T [MeV]

23/24



e The EoS for QCD at large chemical potential is highly demanded in HIC community,
especially for hydrodynamic simulations

e Historical approach of Taylor expansion for EoS has shortcomings

e Because of technical/numerical challenges

e Because of phase structure of the theory

e An alternative summation scheme tailored to the specific behavior of relevant
observables seems a better approach

e Just as Taylor, systematically improvable if given sufficient computing power
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THANK YOU!
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BACKUP



The results for xy(T), r4(T)

The coefficients x2(T) and k4(T) calculated on a 243 x 8 lattice vs. our polynomial fit
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