Novel extrapolation scheme for lattice QCD

 equation of statePaolo Parotto, Bergische Universität Wuppertal
December 11, 2020
Zimanyi School 2020

with:
S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, A. Pásztor, C. Ratti

Introduction - The phase diagram of QCD

Different phases of QCD matter (in equilibrium) are depicted in (temperature vs baryo-chemical potential) phase diagram

- Early Universe-like conditions at $\mu_{B}=0$ (matter-anti-matter symmetry)
- At $T \simeq 0$ and $\mu_{B} \simeq 922 \mathrm{MeV}$ sits "ordinary nuclear matter" (e.g. a proton), while at much larger μ_{B} might sit neutron stars (cores)
- Transition form hadron gas to QGP at $\mu_{B}=0$ is a smooth crossover at $T \simeq 155-160 \mathrm{MeV}$
- At larger μ_{B}, the transition is believed to become of first order \rightarrow critical point

Study of the QCD phase diagram

Theoretical investigation of the phase diagram make use of different methods and tools From first principles:

- Lattice QCD
- Perturbation theory
- Functional methods (functional renormalization group - FRG, Dyson-Schwinger equations, etc...)

Models:

- Nambu-Jona-Lasinio (NJL) -type models (Nambu and Jona-Lasinio, Phys. Rev. 122 (1961) 345, Phys. Rev. 124 (1961) 246)
- Hadron Resonance Gas (HRG) -type models (Hagedorn, Nuovo Cim. Suppl. 3 (1965), 147)
- ...

Thermodynamic description of QCD

Thermodynamics of QCD is commonly investigated in grancanonical ensemble

$$
\mathcal{Z}=\sum_{N} Z_{N} e^{\mu N}
$$

- Equation of State (EoS) is extremely important since it completely describes the equilibrium properties of QCD matter
- One of the main inputs to hydro and several other tools for calculations in heavy-ion collisions and higher-density physics.
- Thermodynamic quantities follow directly from the grancanonical partition function \mathcal{Z} and the relation:

$$
-k_{B} T \ln \mathcal{Z}=U-T S-\mu N
$$

- Pressure: $p=-k_{B} T \frac{\partial \ln \mathcal{Z}}{\partial V}$
- Entropy density: $s=\left(\frac{\partial p}{\partial T}\right)_{\mu_{i}}$
- Charge densities: $n_{i}=\left(\frac{\partial p}{\partial \mu_{i}}\right)_{T, \mu_{j \neq i}}$
- Energy density:

$$
\epsilon=T s-p+\sum_{i} \mu_{i} n_{i}
$$

- Speed of sound: $c_{s}^{2}=\left(\frac{\partial p}{\partial \epsilon}\right)_{s / n_{B}}$
- More (Fluctuations, etc...)

EoS at $\mu_{B}=0$

A combination of methods gives us good understanding of the EoS at $\mu_{B}=0$ at all temperatures

- Perturbative QCD at high temperature
\rightarrow "pure quark-gluon phase"
- Hadron Resonance Gas (HRG) model at low temperature

$$
\rightarrow \text { "pure hadron phase" }
$$

- Lattice QCD bridges between regimes and captures the transition

WB: Borsányi et al., PLB 370 (2014) 99-104

Lattice QCD: equation of state at $\mu_{B}=0$

- EoS at vanishing chemical potential known to high precision for a few years now (continuum limit, physical quark masses)
- Great agreement between different collaborations
\Rightarrow Systematics are well under control and results are extremely reliable

WB: Borsányi et al., PLB 370 (2014) 99-104, HotQCD: Bazavov et al. PRD 90 (2014) 094503 5/24

Lattice QCD at finite μ_{B}

Lattice QCD suffers from the sign problem at finite chemical potential

- Taylor expansion around $\mu_{B}=0$

$$
\frac{p\left(T, \mu_{B}\right)}{T^{4}}=\sum_{n=0}^{\infty} c_{2 n}(T)\left(\frac{\mu_{B}}{T}\right)^{2 n}, \quad c_{n}(T)=\frac{1}{n!} \chi_{n}^{B}\left(T, \mu_{B}=0\right)
$$

- Analytical continuation from imaginary μ_{B}
- Other methods to work around the sign problem still in exploratory stages
- Reweighting techniques
- Complex Langevin
- Lefschetz thimbles
- ...
- The equation of state: lattice results for the Taylor coefficients are currently available up to $\mathcal{O}\left(\hat{\mu}_{B}^{8}\right)$, but the reach is still limited to $\hat{\mu}_{B} \lesssim 2-2.5$ despite great computational effort (WB: Borsányi et al. JHEP 10 (2018) 205, HotQCD: Bazavov et al. PRD101 (2020), 074502)

Lattice QCD at finite μ_{B} - Taylor coefficients

- Fluctuations of baryon number are the Taylor expansion coefficients of the pressure

$$
\chi_{i j k}^{B Q S}(T)=\left.\frac{\partial^{i+j+k} p / T^{4}}{\partial \hat{\mu}_{B}^{i} \partial \hat{\mu}_{Q}^{j} \partial \hat{\mu}_{S}^{k}}\right|_{\vec{\mu}=0}
$$

- Signal extraction is increasingly difficult with higher orders, especially in the transition region
- Higher order coefficients present a more complicated structure

WB: Borsányi et al. JHEP 10 (2018) 205; (also e.g., HotQCD: Bazavov et al. PRD101 (2020), 074502)

Lattice QCD at finite μ_{B} - Taylor expansion

- Thermodynamic quantities at large chemical potential become problematic
- Higher orders do not help with the convergence of the series

- Inherent problem with Taylor expansion: carried out at $T=$ const. This doesn't cope well with $\hat{\mu}_{B}$-dependent transition temperaure
- Can we find an alternative expansion to improve finite- $\hat{\mu}_{B}$ behavior?

An alternative approach

From simulations at imaginary μ_{B} we observe that $\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)$ at (imaginary) $\hat{\mu}_{B}$ appears to be differing from $\chi_{2}^{B}(T, 0)$ mostly by a shift in T :

$$
\frac{\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}}=\chi_{2}^{B}\left(T^{\prime}, 0\right), \quad T^{\prime}=T\left(1+\kappa \hat{\mu}_{B}^{2}\right)
$$

- More apparent close to the transition
- Important note: We can't expect this simple description to work at high-T. However:
- At high- T Taylor expansion has no problems ($\chi_{n}^{B} \simeq 0 \forall n>4$)
- We don't need EoS from lattice at high-T
- We extend the formalism of "lines of constant physics" from HotQCD: Bazavov et al. PRD 95 (2017) 054504

Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function $f(T)$ which shifts with $\hat{\mu}$, with a simple T-independent shifting parameter κ. How does Taylor cope with it?

$$
f(T, \hat{\mu})=f\left(T^{\prime}, 0\right), \quad T^{\prime}=T\left(1+\kappa \hat{\mu}^{2}\right)
$$

We fitted $f(T, 0)=a+b \arctan (c(T-d))$ to $\chi_{2}^{B}(T, 0)$ data for a 48×12 lattice

Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function $f(T)$ which shifts with $\hat{\mu}$, with a simple T-independent shifting parameter κ. How does Taylor cope with it?

$$
f(T, \hat{\mu})=f\left(T^{\prime}, 0\right), \quad T^{\prime}=T\left(1+\kappa \hat{\mu}^{2}\right)
$$

We fitted $f(T, 0)=a+b \arctan (c(T-d))$ to $\chi_{2}^{B}(T, 0)$ data for a 48×12 lattice

Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function $f(T)$ which shifts with $\hat{\mu}$, with a simple T-independent shifting parameter κ. How does Taylor cope with it?

$$
f(T, \hat{\mu})=f\left(T^{\prime}, 0\right), \quad T^{\prime}=T\left(1+\kappa \hat{\mu}^{2}\right)
$$

We fitted $f(T, 0)=a+b \arctan (c(T-d))$ to $\chi_{2}^{B}(T, 0)$ data for a 48×12 lattice

Taylor expanding a sigmoid

- The Taylor expansion seems to have problems reproducing the original function (left)
- A similar picture arises from actual lattice data (right)

- Problems at T slightly larger than $T_{p c} \Rightarrow$ influence from structure in χ_{6}^{B} and χ_{8}^{B}

An alternative approach

We also notice that a very similar scenario appears for:

$$
\frac{\chi_{1}^{S}}{\hat{\mu}_{B}}\left(T, \hat{\mu}_{B}\right)=\chi_{11}^{B S}\left(T^{\prime}, 0\right)
$$

$$
\chi_{2}^{S}\left(T, \hat{\mu}_{B}\right)=\chi_{2}^{S}\left(T^{\prime}, 0\right)
$$

Formulation

- We have observed the $\hat{\mu}_{B}$-dependence seems to amout to a simple T-shift
- However, a simplistic scenario with a single T - independent parameter κ cannot be sufficient, hence we seek a systematic treatment which can serve as an alternative to Taylor expansion
- We allow for more than $\mathcal{O}\left(\hat{\mu}^{2}\right)$ expansion of T^{\prime} and letting the coefficients be T-dependent:

$$
\frac{\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}}=\chi_{2}^{B}\left(T^{\prime}, 0\right), \quad T^{\prime}=T\left(1+\kappa_{2}(T) \hat{\mu}_{B}^{2}+\kappa_{4}(T) \hat{\mu}_{B}^{4}+\mathcal{O}\left(\hat{\mu}_{B}^{6}\right)\right)
$$

- Important: we are simply re-organizing the Taylor expansion via an expansion of the shift

$$
\Delta T=T-T^{\prime}=\left(\kappa_{2}(T) \hat{\mu}_{B}^{2}+\kappa_{4}(T) \hat{\mu}_{B}^{4}+\mathcal{O}\left(\hat{\mu}_{B}^{6}\right)\right)
$$

HotQCD: Bazavov et al. PRD 95 (2017) 054504

Formulation

1. With a Taylor expansion one has:

$$
\frac{\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}}=\chi_{2}^{B}(T, 0)+\frac{1}{3!} \chi_{4}^{B}(T, 0) \hat{\mu}_{B}^{2}+\frac{1}{5!} \chi_{6}^{B}(T, 0) \hat{\mu}_{B}^{4}+\mathcal{O}\left(\hat{\mu}_{B}^{6}\right)
$$

2. On the other hand, with an expansion in $\Delta T=T-T^{\prime}$ one can write:

$$
\begin{aligned}
\frac{\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}} & =\chi_{2}^{B}(T, 0)+\Delta T \frac{d \chi_{2}}{d T}+\frac{1}{2} \Delta T^{2} \frac{d^{2} \chi_{2}}{d T^{2}}+\mathcal{O}\left(\Delta T^{3}\right)= \\
& =\chi_{2}^{B}(T, 0)+\kappa_{2}(T) T \frac{d \chi_{2}}{d T} \hat{\mu}_{B}^{2}+\left[\frac{T^{2}}{2} \kappa_{2}^{2}(T) \frac{d^{2} \chi_{2}}{d T^{2}}+T \kappa_{4}(T) \frac{d \chi_{2}}{d T}\right] \hat{\mu}_{B}^{4}+\mathcal{O}\left(\hat{\mu}_{B}^{6}\right)
\end{aligned}
$$

$$
\text { since } \Delta T=T\left(\kappa_{2}(T) \hat{\mu}_{B}^{2}+\kappa_{4}(T) \hat{\mu}_{B}^{4}\right) .
$$

Formulation

Equating same-order terms in the previous expansions one can easily show that:

$$
\begin{aligned}
\kappa_{2}(T) & =\frac{1}{6 T} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B^{\prime}}(T)} \\
\kappa_{4}(T) & =\frac{1}{360 \chi_{2}^{B^{\prime}}(T)^{3}}\left(3 \chi_{2}^{B^{\prime}}(T)^{2} \chi_{6}^{B}(T)-5 \chi_{2}^{B^{\prime \prime}}(T) \chi_{4}^{B}(T)^{2}\right)
\end{aligned}
$$

- The procedure can in principle be carried over systematically
- Higher order terms still suffer from cancellations and can be challenging
- However we can exploit imaginary- $\hat{\mu}_{B}$ simulations to extract $\kappa_{n}(T)$

Formulation

Similar relations can be derived analogously from:

$$
\frac{\chi_{1}^{S}}{\hat{\mu}_{B}}\left(T, \hat{\mu}_{B}\right)=\chi_{11}^{B S}\left(T^{\prime}, 0\right), \quad \chi_{2}^{S}\left(T, \hat{\mu}_{B}\right)=\chi_{2}^{S}\left(T^{\prime}, 0\right)
$$

yielding:

$$
\begin{array}{rlrl}
\kappa_{2}^{B S}(T) & =\frac{1}{6 T} \frac{\chi_{31}^{B S}(T)}{\chi_{11}^{B S^{\prime}}(T)} & \kappa_{2}^{S}(T) & =\frac{1}{2 T} \frac{\chi_{22}^{B S}(T)}{\chi_{2}^{S^{\prime}}(T)} \\
\kappa_{4}^{B S}(T) & =\frac{1}{360 \chi_{11}^{B S^{\prime}}(T)^{3}}\left(3 \chi_{11}^{B S^{\prime}}(T)^{2} \chi_{51}^{B S}(T)\right. & \kappa_{4}^{S}(T) & =\frac{1}{24 \chi_{2}^{S^{\prime}}(T)^{3}}\left(\chi_{2}^{S^{\prime}}(T)^{2} \chi_{42}^{B S}(T)\right. \\
\left.-5 \chi_{11}^{B S^{\prime \prime}}(T) \chi_{31}^{B S}(T)^{2}\right) & & \left.-3 \chi_{2}^{S^{\prime \prime}}(T) \chi_{22}^{B S}(T)^{2}\right)
\end{array}
$$

Determine κ_{n}

I. Directly determine $\kappa_{2}(T)$ at $\hat{\mu}_{B}=0$ from:

$$
\kappa_{2}(T)=\frac{1}{6 T} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B^{\prime}}(T)}
$$

II. From our imaginary- $\hat{\mu}_{B}$ simulations $\left(\hat{\mu}_{Q}=\hat{\mu}_{S}=0\right)$ we calculate:

$$
\frac{T^{\prime}-T}{T \hat{\mu}_{B}^{2}}=\kappa_{2}(T)+\kappa_{4}(T) \hat{\mu}_{B}^{2}+\mathcal{O}\left(\hat{\mu}_{B}^{4}\right)=K(T)
$$

III. Calculate the quantity $K\left(T, N_{\tau}, \hat{\mu}_{B}^{2}\right)$ for several $\hat{\mu}_{B}^{2}$ and for $N_{\tau}=8,10,12$
IV. Perform a combined fit of the $\hat{\mu}_{B}^{2}$ and $1 / N_{\tau}^{2}$ dependence of $K(T)$ at each temperature, yielding a continuum estimate for the coefficients

$$
\Rightarrow \text { The } \mathcal{O}(1) \text { and } \mathcal{O}\left(\hat{\mu}_{B}^{2}\right) \text { coefficients of the fit are } \kappa_{2}(T) \text { and } \kappa_{4}(T)
$$

Systematics

For an analysis of the systematic uncertainties, we consider:

- $2 x$ scale settings
- 2 x choices of $\hat{\mu}_{B}$ fitting range ($\hat{\mu}_{B}=i n \pi / 8$ with $n \in\{0,3-5\}$ or $n \in\{0,3-6\}$)
- 3 x fit functions. Always linear in $1 / N_{\tau}^{2}$, and linear, parabolic or $1 /$ linear in $\hat{\mu}_{B}^{2}$
- 2 x splines at $\hat{\mu}_{B}=0$
for a total of 24 x analyses for each T.
At each temperature, the 24 x analyses are combined with Akaike weights.

The results for $\kappa_{2}(T), \kappa_{4}(T)$

- At low temperatures, there is agreement with the HRG model result
- As expected, at high temperatures κ_{2} increases
- The values of κ_{4} are always compatible with $0 \rightarrow$ we have indication on the oder of magnuitude

From the results we can tell our initial guess was not far-off:

- $\kappa_{2}(T)$ does not vary much over a large T-range
- $\kappa_{4}(T)$ is indeed very small

The results for $\kappa_{2}(T), \kappa_{4}(T)$

A similar picture appears for κ_{n} describing the shift in $\chi_{11}^{B S}$ and χ_{2}^{S}

Thermodynamics at finite (real) μ_{B}

Thermodynamic quantities at finite (real) μ_{B} can be reconstruted from the same ansazt:

$$
\frac{n_{B}\left(T, \hat{\mu}_{B}\right)}{T^{3}}=\chi_{B}^{2}\left(T^{\prime}, 0\right)
$$

with $T^{\prime}=T\left(1+\kappa_{2}(T) \hat{\mu}_{B}^{2}+\kappa_{4}(T) \hat{\mu}_{B}^{4}\right)$.
From the baryon density n_{B} one finds the pressure:

$$
\frac{p\left(T, \hat{\mu}_{B}\right)}{T^{4}}=\frac{p(T, 0)}{T^{4}}+\int_{0}^{\hat{\mu}_{B}} \begin{gathered}
\hat{\mu}_{B}^{\prime}
\end{gathered} \frac{n_{B}\left(T, \hat{\mu}_{B}^{\prime}\right)}{T^{3}}
$$

then the entropy, energy density:

$$
\begin{aligned}
& \frac{s\left(T, \hat{\mu}_{B}\right)}{T^{4}}=4 \frac{p\left(T, \hat{\mu}_{B}\right)}{T^{4}}+\left.T \frac{\partial p\left(T, \hat{\mu}_{B}\right)}{\partial T}\right|_{\hat{\mu}_{B}}-\hat{\mu}_{B} \frac{n_{B}\left(T, \hat{\mu}_{B}\right)}{T^{3}} \\
& \frac{\epsilon\left(T, \hat{\mu}_{B}\right)}{T^{4}}=\frac{s\left(T, \hat{\mu}_{B}\right)}{T^{3}}-\frac{p\left(T, \hat{\mu}_{B}\right)}{T^{4}}+\hat{\mu}_{B} \frac{n_{B}\left(T, \hat{\mu}_{B}\right)}{T^{3}}
\end{aligned}
$$

Thermodynamics at finite (real) μ_{B}

For our extrapolation at finite (real) chemical potential we use:

- Continuum extrapolated pressure and entropy density at $\hat{\mu}_{B}=0$ (from Borsányi et al. PlB 730 (2014) 99)
- Continuum $\chi_{2}^{B}(T)$ at $\hat{\mu}_{B}=0$ (from Bellwied et al. PRD 92 (2015) 114505)

The last ingredients are the coefficients $\kappa_{n}(T)$:

- The curves for $\kappa_{2}(T)$ and $\kappa_{4}(T)$ are the result of a fit ($3^{\text {rd }}$ order polynomial)
- At low-T $(T<135 \mathrm{MeV})$ we included a few HRG points to constraint the fit

Thermodynamics at finite (real) μ_{B}

- Including $\kappa_{4}(T)$ results in added error, but doesn't affect the results sensibly
- In any case, errors are under control up to $\hat{\mu}_{B} \simeq 3.5$
- At the level of the pressure, errors are extremely small (unsurprinsignly)

Thermodynamics at finite (real) μ_{B}

- Including $\kappa_{4}(T)$ results in added error, but doesn't affect the results sensibly
- In any case, errors are under control up to $\hat{\mu}_{B} \simeq 3.5$
- At the level of the pressure, errors are extremely small (unsurprinsignly)

Thermodynamics at finite (real) μ_{B}

- Including $\kappa_{4}(T)$ results in added error, but doesn't affect the results sensibly
- In any case, errors are under control up to $\hat{\mu}_{B} \simeq 3.5$
- Quantities more sensitive to the T-dependence like the entropy still show a signal at very large $\hat{\mu}_{B}$

Thermodynamics at finite (real) μ_{B}

- Including $\kappa_{4}(T)$ results in added error, but doesn't affect the results sensibly
- In any case, errors are under control up to $\hat{\mu}_{B} \simeq 3.5$
- Quantities more sensitive to the T-dependence like the entropy still show a signal at very large $\hat{\mu}_{B}$

- The EoS for QCD at large chemical potential is highly demanded in HIC community, especially for hydrodynamic simulations
- Historical approach of Taylor expansion for EoS has shortcomings
- Because of technical/numerical challenges
- Because of phase structure of the theory
- An alternative summation scheme tailored to the specific behavior of relevant observables seems a better approach
- Just as Taylor, systematically improvable if given sufficient computing power
- The EoS for QCD at large chemical potential is highly demanded in HIC community, especially for hydrodynamic simulations
- Historical approach of Taylor expansion for EoS has shortcomings
- Because of technical/numerical challenges
- Because of phase structure of the theory
- An alternative summation scheme tailored to the specific behavior of relevant observables seems a better approach
- Just as Taylor, systematically improvable if given sufficient computing power

> THANK YOU!

BACKUP

The results for $\kappa_{2}(T), \kappa_{4}(T)$

The coefficients $\kappa_{2}(T)$ and $\kappa_{4}(T)$ calculated on a $24^{3} \times 8$ lattice vs. our polynomial fit

