Novel extrapolation scheme for lattice QCD equation of state

Paolo Parotto, Bergische Universität Wuppertal December 11, 2020

Zimanyi School 2020

with: S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, A. Pásztor, C. Ratti

Introduction - The phase diagram of QCD

Different phases of QCD matter (in equilibrium) are depicted in (temperature vs baryo-chemical potential) phase diagram

- Early Universe-like conditions at $\mu_B = 0$ (matter-anti-matter symmetry)
- At $T \simeq 0$ and $\mu_B \simeq 922$ MeV sits "ordinary nuclear matter" (e.g. a proton), while at much larger μ_B might sit **neutron stars** (cores)
- Transition form hadron gas to QGP at $\mu_B = 0$ is a smooth crossover at $T \simeq 155 160 \text{ MeV}$
- At larger μ_B, the transition is believed to become of first order → critical point

Study of the QCD phase diagram

Theoretical investigation of the phase diagram make use of different methods and tools

From first principles:

- Lattice QCD
- Perturbation theory
- Functional methods (functional renormalization group FRG, Dyson-Schwinger equations, etc...)

Models:

- Nambu-Jona-Lasinio (NJL) -type models (Nambu and Jona-Lasinio, Phys. Rev. 122 (1961) 345, Phys. Rev. 124 (1961) 246)
- Hadron Resonance Gas (HRG) -type models (Hagedorn, Nuovo Cim. Suppl. 3 (1965), 147)

Thermodynamic description of QCD

Thermodynamics of QCD is commonly investigated in grancanonical ensemble

$$\mathcal{Z} = \sum_{N} Z_{N} e^{\mu N}$$

- Equation of State (EoS) is extremely important since it completely describes the equilibrium properties of QCD matter
- One of the main inputs to hydro and several other tools for calculations in heavy-ion collisions and higher-density physics.
- Thermodynamic quantities follow directly from the gran canonical partition function $\mathcal Z$ and the relation:

$$-k_B T \ln \mathcal{Z} = U - TS - \mu N$$

- **Pressure**: $p = -k_B T \frac{\partial \ln Z}{\partial V}$
- Entropy density: $s = \left(\frac{\partial p}{\partial T}\right)_{\mu_i}$
- Charge densities: $n_i = \left(\frac{\partial p}{\partial \mu_i}\right)_{T,\mu_j \neq i}$

• Energy density:

$$\epsilon = Ts - p + \sum_{i} \mu_{i} n_{i}$$

- Speed of sound: $c_s^2 = \left(\frac{\partial p}{\partial \epsilon}\right)_{s/n_B}$
- More (Fluctuations, etc...)

EoS at $\mu_B = 0$

A combination of methods gives us good understanding of the EoS at $\mu_B = 0$ at all temperatures

- Perturbative QCD at high temperature
 → "pure quark-gluon phase"
- Hadron Resonance Gas (HRG) model at low temperature
 - \rightarrow "pure hadron phase"
- Lattice QCD bridges between regimes and captures the transition

WB: Borsányi et al., PLB 370 (2014) 99-104

Lattice QCD: equation of state at $\mu_B = 0$

- EoS at vanishing chemical potential known to high precision for a few years now (continuum limit, physical quark masses)
- Great agreement between different collaborations
 - \Rightarrow Systematics are well under control and results are extremely reliable

WB: Borsányi et al., PLB 370 (2014) 99-104, HotQCD: Bazavov et al. PRD 90 (2014) 094503 5/24

Lattice QCD at finite μ_B

Lattice QCD suffers from the sign problem at finite chemical potential

• Taylor expansion around $\mu_B = 0$

$$\frac{p(T,\mu_B)}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n} , \qquad c_n(T) = \frac{1}{n!} \chi_n^B(T,\mu_B=0)$$

- Analytical continuation from imaginary μ_B
- Other methods to work around the sign problem still in exploratory stages
 - Reweighting techniques
 - Complex Langevin
 - Lefschetz thimbles
 - ...
- The equation of state: lattice results for the Taylor coefficients are currently available up to $\mathcal{O}(\hat{\mu}_B^8)$, but the reach is still limited to $\hat{\mu}_B \lesssim 2-2.5$ despite great computational effort (WB: Borsányi *et al.* JHEP 10 (2018) 205, HotQCD: Bazavov *et al.* PRD101 (2020), 074502)

Lattice QCD at finite μ_B - Taylor coefficients

• Fluctuations of baryon number are the Taylor expansion coefficients of the pressure

$$\chi^{BQS}_{ijk}(T) = \left. \frac{\partial^{i+j+k} p/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S} \right|_{\vec{\mu}=0}$$

- Signal extraction is increasingly difficult with higher orders, especially in the transition region
- Higher order coefficients present a more complicated structure

7/24

WB: Borsányi et al. JHEP 10 (2018) 205; (also e.g., HotQCD: Bazavov et al. PRD101 (2020), 074502)

Lattice QCD at finite μ_B - Taylor expansion

- Thermodynamic quantities at large chemical potential become problematic
- Higher orders do not help with the convergence of the series

- Inherent problem with Taylor expansion: carried out at T = const. This doesn't cope well with $\hat{\mu}_B$ -dependent transition temperaure
- Can we find an alternative expansion to improve finite- $\hat{\mu}_B$ behavior?

An alternative approach

From simulations at imaginary μ_B we observe that $\chi_1^B(T, \hat{\mu}_B)$ at (imaginary) $\hat{\mu}_B$ appears to be differing from $\chi_2^B(T, 0)$ mostly by a shift in T:

$$\frac{\chi_1^B(T, \,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T', 0) \,\,, \quad T' = T\left(1 + \kappa \,\hat{\mu}_B^2\right)$$

- More apparent close to the transition
- Important note: We can't expect this simple description to work at high-T. However:
 - At high-T Taylor expansion has no problems $(\chi_n^B \simeq 0 \ \forall n > 4)$
 - We don't need EoS from lattice at high-T
- We extend the formalism of "lines of constant physics" from HotQCD: Bazavov et al. PRD 95 (2017) 054504

Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function f(T) which shifts with $\hat{\mu}$, with a simple T-independent shifting parameter κ . How does Taylor cope with it?

$$f(T, \hat{\mu}) = f(T', 0) , \qquad T' = T(1 + \kappa \hat{\mu}^2) ,$$

We fitted $f(T,0) = a + b \arctan(c(T-d))$ to $\chi_2^B(T,0)$ data for a 48 × 12 lattice

Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function f(T) which shifts with $\hat{\mu}$, with a simple T-independent shifting parameter κ . How does Taylor cope with it?

$$f(T, \hat{\mu}) = f(T', 0) , \qquad T' = T(1 + \kappa \hat{\mu}^2) ,$$

We fitted $f(T,0) = a + b \arctan(c(T-d))$ to $\chi_2^B(T,0)$ data for a 48 × 12 lattice

Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function f(T) which shifts with $\hat{\mu}$, with a simple T-independent shifting parameter κ . How does Taylor cope with it?

$$f(T, \hat{\mu}) = f(T', 0) , \qquad T' = T(1 + \kappa \hat{\mu}^2) ,$$

We fitted $f(T,0) = a + b \arctan(c(T-d))$ to $\chi_2^B(T,0)$ data for a 48 × 12 lattice

Taylor expanding a sigmoid

- The Taylor expansion seems to have problems reproducing the original function (left)
- A similar picture arises from actual lattice data (right)

• Problems at T slightly larger than $T_{pc} \Rightarrow$ influence from structure in χ_6^B and χ_8^B

An alternative approach

We also notice that a very similar scenario appears for:

$$\frac{\chi_1^S}{\hat{\mu}_B}(T,\,\hat{\mu}_B) = \chi_{11}^{BS}(T',0) \;,$$

$$\chi_2^S(T, \hat{\mu}_B) = \chi_2^S(T', 0)$$

Formulation

- We have observed the $\hat{\mu}_B$ -dependence seems to amout to a simple T-shift
- However, a simplistic scenario with a single T- independent parameter κ cannot be sufficient, hence we seek a systematic treatment which can serve as an alternative to Taylor expansion
- We allow for more than $\mathcal{O}(\hat{\mu}^2)$ expansion of T' and letting the coefficients be T-dependent:

$$\frac{\chi_1^B(T,\,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T',0) \ , \quad T' = T\left(1 + \kappa_2(T)\,\hat{\mu}_B^2 + \kappa_4(T)\,\hat{\mu}_B^4 + \mathcal{O}(\,\hat{\mu}_B^6)\right)$$

• **Important:** we are simply re-organizing the Taylor expansion via an expansion of the shift

$$\Delta T = T - T' = \left(\kappa_2(T)\,\hat{\mu}_B^2 + \kappa_4(T)\,\hat{\mu}_B^4 + \mathcal{O}(\,\hat{\mu}_B^6)\right)$$

HotQCD: Bazavov et al. PRD 95 (2017) 054504

1. With a Taylor expansion one has:

$$\frac{\chi_1^B(T,\,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T,0) + \frac{1}{3!}\chi_4^B(T,0)\,\hat{\mu}_B^2 + \frac{1}{5!}\chi_6^B(T,0)\,\hat{\mu}_B^4 + \mathcal{O}(\,\hat{\mu}_B^6)$$

2. On the other hand, with an expansion in $\Delta T = T - T'$ one can write:

$$\frac{\chi_1^B(T,\,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T,0) + \Delta T \frac{d\chi_2}{dT} + \frac{1}{2} \Delta T^2 \frac{d^2\chi_2}{dT^2} + \mathcal{O}(\Delta T^3) =$$
$$= \chi_2^B(T,0) + \kappa_2(T) T \frac{d\chi_2}{dT} \,\hat{\mu}_B^2 + \left[\frac{T^2}{2}\kappa_2^2(T)\frac{d^2\chi_2}{dT^2} + T\kappa_4(T)\frac{d\chi_2}{dT}\right] \,\hat{\mu}_B^4 + \mathcal{O}(\hat{\mu}_B^6)$$

since $\Delta T = T \left(\kappa_2(T) \hat{\mu}_B^2 + \kappa_4(T) \hat{\mu}_B^4 \right).$

Formulation

Equating same-order terms in the previous expansions one can easily show that:

$$\kappa_{2}(T) = \frac{1}{6T} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B'}(T)}$$

$$\kappa_{4}(T) = \frac{1}{360\chi_{2}^{B'}(T)^{3}} \left(3\chi_{2}^{B'}(T)^{2}\chi_{6}^{B}(T) - 5\chi_{2}^{B''}(T)\chi_{4}^{B}(T)^{2}\right)$$

• The procedure can in principle be carried over systematically

. . .

- Higher order terms still suffer from cancellations and can be challenging
- However we can exploit imaginary- $\hat{\mu}_B$ simulations to extract $\kappa_n(T)$

Similar relations can be derived analogously from:

$$\frac{\chi_1^S}{\hat{\mu}_B}(T,\,\hat{\mu}_B) = \chi_{11}^{BS}(T',0) , \qquad \qquad \chi_2^S(T,\,\hat{\mu}_B) = \chi_2^S(T',0)$$

yielding:

$$\begin{aligned} \kappa_2^{BS}(T) &= \frac{1}{6T} \frac{\chi_{31}^{BS}(T)}{\chi_{11}^{BS'}(T)} & \kappa_2^S(T) &= \frac{1}{2T} \frac{\chi_{22}^{BS}(T)}{\chi_2^{S'}(T)} \\ \kappa_4^{BS}(T) &= \frac{1}{360\chi_{11}^{BS'}(T)^3} \left(3\chi_{11}^{BS'}(T)^2 \chi_{51}^{BS}(T) & \kappa_4^S(T) &= \frac{1}{24\chi_2^{S'}(T)^3} \left(\chi_2^{S'}(T)^2 \chi_{42}^{BS}(T) \right) \\ &- 5\chi_{11}^{BS''}(T) \chi_{31}^{BS}(T)^2 \right) & -3\chi_2^{S''}(T)\chi_{22}^{BS}(T)^2 \end{aligned}$$

Determine κ_n

I. Directly determine $\kappa_2(T)$ at $\hat{\mu}_B = 0$ from:

$$\kappa_2(T) = \frac{1}{6T} \frac{\chi_4^B(T)}{\chi_2^{B'}(T)}$$

II. From our imaginary- $\hat{\mu}_B$ simulations ($\hat{\mu}_Q = \hat{\mu}_S = 0$) we calculate:

$$\frac{T'-T}{T\,\hat{\mu}_B^2} = \kappa_2(T) + \kappa_4(T)\,\hat{\mu}_B^2 + \mathcal{O}(\,\hat{\mu}_B^4) = K(T)$$

III. Calculate the quantity $K(T, N_{\tau}, \hat{\mu}_B^2)$ for several $\hat{\mu}_B^2$ and for $N_{\tau} = 8, 10, 12$

IV. Perform a combined fit of the $\hat{\mu}_B^2$ and $1/N_{\tau}^2$ dependence of K(T) at each temperature, yielding a continuum estimate for the coefficients

 \Rightarrow The $\mathcal{O}(1)$ and $\mathcal{O}(\hat{\mu}_B^2)$ coefficients of the fit are $\kappa_2(T)$ and $\kappa_4(T)$

For an analysis of the systematic uncertainties, we consider:

- 2x scale settings
- 2x choices of $\hat{\mu}_B$ fitting range ($\hat{\mu}_B = in\pi/8$ with $n \in \{0, 3-5\}$ or $n \in \{0, 3-6\}$)
- 3x fit functions. Always linear in $1/N_{\tau}^2$, and linear, parabolic or 1/linear in $\hat{\mu}_B^2$
- 2x splines at $\hat{\mu}_B = 0$

for a total of 24x analyses for each T.

At each temperature, the 24x analyses are combined with Akaike weights.

The results for $\kappa_2(T)$, $\kappa_4(T)$

- At low temperatures, there is agreement with the HRG model result
- As expected, at high temperatures κ_2 increases
- The values of κ_4 are always compatible with $0 \rightarrow$ we have indication on the oder of magnuitude

- $\kappa_2(T)$ does not vary much over a large *T*-range
- $\kappa_4(T)$ is indeed very small

HotQCD: Bazavov et al. PRD 95 (2017) 054504

A similar picture appears for κ_n describing the shift in χ_{11}^{BS} and χ_2^S

Thermodynamic quantities at finite (real) μ_B can be reconstruted from the same ansazt:

$$\frac{n_B(T,\,\hat{\mu}_B)}{T^3} = \chi_B^2(T',0)$$

with $T' = T(1 + \kappa_2(T) \hat{\mu}_B^2 + \kappa_4(T) \hat{\mu}_B^4).$

From the baryon density n_B one finds the pressure:

$$\frac{p(T, \hat{\mu}_B)}{T^4} = \frac{p(T, 0)}{T^4} + \int_0^{\hat{\mu}_B} \frac{n_B(T, \hat{\mu}'_B)}{T^3}$$

then the entropy, energy density:

$$\frac{s(T, \hat{\mu}_B)}{T^4} = 4 \frac{p(T, \hat{\mu}_B)}{T^4} + T \left. \frac{\partial p(T, \hat{\mu}_B)}{\partial T} \right|_{\hat{\mu}_B} - \hat{\mu}_B \frac{n_B(T, \hat{\mu}_B)}{T^3}$$
$$\frac{\epsilon(T, \hat{\mu}_B)}{T^4} = \frac{s(T, \hat{\mu}_B)}{T^3} - \frac{p(T, \hat{\mu}_B)}{T^4} + \hat{\mu}_B \frac{n_B(T, \hat{\mu}_B)}{T^3}$$

For our extrapolation at finite (real) chemical potential we use:

- Continuum extrapolated pressure and entropy density at $\hat{\mu}_B = 0$ (from Borsányi *et al.* PLB 730 (2014) 99)
- Continuum $\chi_2^B(T)$ at $\hat{\mu}_B = 0$ (from Bellwied *et al.* PRD 92 (2015) 114505)

The last ingredients are the coefficients $\kappa_n(T)$:

- The curves for $\kappa_2(T)$ and $\kappa_4(T)$ are the result of a fit (3rd order polynomial)
- At low-T ($T < 135 \,\mathrm{MeV}$) we included a few HRG points to constraint the fit

- Including $\kappa_4(T)$ results in added error, but doesn't affect the results sensibly
- In any case, errors are under control up to $\hat{\mu}_B \simeq 3.5$
- At the level of the pressure, errors are extremely small (unsurprinsignly)

- Including $\kappa_4(T)$ results in added error, but doesn't affect the results sensibly
- In any case, errors are under control up to $\hat{\mu}_B \simeq 3.5$
- At the level of the pressure, errors are extremely small (unsurprinsignly)

- Including $\kappa_4(T)$ results in added error, but doesn't affect the results sensibly
- In any case, errors are under control up to $\hat{\mu}_B \simeq 3.5$
- Quantities more sensitive to the T-dependence like the entropy still show a signal at very large $\hat{\mu}_B$

- Including $\kappa_4(T)$ results in added error, but doesn't affect the results sensibly
- In any case, errors are under control up to $\hat{\mu}_B \simeq 3.5$
- Quantities more sensitive to the T-dependence like the entropy still show a signal at very large $\hat{\mu}_B$

- The EoS for QCD at large chemical potential is highly demanded in HIC community, especially for hydrodynamic simulations
- Historical approach of Taylor expansion for EoS has shortcomings
 - Because of technical/numerical challenges
 - Because of phase structure of the theory
- An alternative summation scheme tailored to the specific behavior of relevant observables seems a better approach
- Just as Taylor, systematically improvable if given sufficient computing power

- The EoS for QCD at large chemical potential is highly demanded in HIC community, especially for hydrodynamic simulations
- Historical approach of Taylor expansion for EoS has shortcomings
 - Because of technical/numerical challenges
 - Because of phase structure of the theory
- An alternative summation scheme tailored to the specific behavior of relevant observables seems a better approach
- Just as Taylor, systematically improvable if given sufficient computing power

THANK YOU!

BACKUP

The coefficients $\kappa_2(T)$ and $\kappa_4(T)$ calculated on a $24^3 \times 8$ lattice vs. our polynomial fit

