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Introduction - The phase diagram of QCD

Different phases of QCD matter (in equilibrium) are depicted in (temperature vs

baryo-chemical potential) phase diagram

� Early Universe-like conditions at µB = 0

(matter-anti-matter symmetry)

� At T ' 0 and µB ' 922 MeV sits “ordinary

nuclear matter” (e.g. a proton), while at

much larger µB might sit neutron stars

(cores)

� Transition form hadron gas to QGP at

µB = 0 is a smooth crossover at

T ' 155− 160 MeV

� At larger µB , the transition is believed to

become of first order → critical point
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Study of the QCD phase diagram

Theoretical investigation of the phase diagram make use of different methods and tools

From first principles:

� Lattice QCD

� Perturbation theory

� Functional methods (functional renormalization group - FRG, Dyson-Schwinger

equations, etc...)

Models:

� Nambu-Jona-Lasinio (NJL) -type models (Nambu and Jona-Lasinio, Phys. Rev. 122

(1961) 345, Phys. Rev. 124 (1961) 246)

� Hadron Resonance Gas (HRG) -type models (Hagedorn, Nuovo Cim. Suppl. 3 (1965),

147)

� ...
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Thermodynamic description of QCD

Thermodynamics of QCD is commonly investigated in grancanonical ensemble

Z =
∑
N

ZNe
µN

� Equation of State (EoS) is extremely important since it completely describes the

equilibrium properties of QCD matter

� One of the main inputs to hydro and several other tools for calculations in heavy-ion

collisions and higher-density physics.

� Thermodynamic quantities follow directly from the grancanonical partition function Z
and the relation:

−kBT lnZ = U − TS − µN
� Pressure: p = −kBT ∂ lnZ

∂V

� Entropy density: s =
(
∂p
∂T

)
µi

� Charge densities: ni =
(
∂p
∂µi

)
T,µj 6=i

� Energy density:

ε = Ts− p+
∑
i µini

� Speed of sound: c2s =
(
∂p
∂ε

)
s/nB

� More (Fluctuations, etc...)
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EoS at µB = 0

A combination of methods gives us good understanding of the EoS at µB = 0 at all

temperatures

� Perturbative QCD at high temperature

→ “pure quark-gluon phase”

� Hadron Resonance Gas (HRG) model at low

temperature

→ “pure hadron phase”

� Lattice QCD bridges between regimes

and captures the transition

WB: Borsányi et al., PLB 370 (2014) 99-104
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Lattice QCD: equation of state at µB = 0

� EoS at vanishing chemical potential known to high precision for a few years now

(continuum limit, physical quark masses)

� Great agreement between different collaborations

⇒ Systematics are well under control and results are extremely reliable

WB: Borsányi et al., PLB 370 (2014) 99-104, HotQCD: Bazavov et al. PRD 90 (2014) 094503 5/24



Lattice QCD at finite µB

Lattice QCD suffers from the sign problem at finite chemical potential

� Taylor expansion around µB = 0

p(T, µB)

T 4
=

∞∑
n=0

c2n(T )
(µB
T

)2n
, cn(T ) =

1

n!
χBn (T, µB = 0)

� Analytical continuation from imaginary µB

� Other methods to work around the sign problem still in exploratory stages

� Reweighting techniques

� Complex Langevin

� Lefschetz thimbles

� ...

� The equation of state: lattice results for the Taylor coefficients are currently

available up to O( µ̂8
B) , but the reach is still limited to µ̂B . 2− 2.5 despite great

computational effort (WB: Borsányi et al. JHEP 10 (2018) 205, HotQCD: Bazavov et al.

PRD101 (2020), 074502) 6/24



Lattice QCD at finite µB - Taylor coefficients

� Fluctuations of baryon number are

the Taylor expansion coefficients of

the pressure

χBQSijk (T ) =
∂i+j+kp/T 4

∂µ̂iB∂µ̂
j
Q∂µ̂

k
S

∣∣∣∣∣
~µ=0

� Signal extraction is increasingly

difficult with higher orders, especially

in the transition region

� Higher order coefficients present a

more complicated structure
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Lattice QCD at finite µB - Taylor expansion

� Thermodynamic quantities at large chemical potential become problematic

� Higher orders do not help with the convergence of the series
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� Inherent problem with Taylor expansion: carried out at T = const. This doesn’t cope

well with µ̂B−dependent transition temperaure

� Can we find an alternative expansion to improve finite- µ̂B behavior?
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An alternative approach

From simulations at imaginary µB we observe that χB1 (T, µ̂B) at (imaginary) µ̂B appears

to be differing from χB2 (T, 0) mostly by a shift in T :

χB1 (T, µ̂B)

µ̂B
= χB2 (T ′, 0) , T ′ = T

(
1 + κ µ̂2

B

)
� More apparent close to the transition

� Important note: We can’t expect this

simple description to work at high-T.

However:

� At high-T Taylor expansion has no

problems (χBn ' 0 ∀n > 4)

� We don’t need EoS from lattice at high-T

� We extend the formalism of ”lines of

constant physics” from HotQCD: Bazavov et

al. PRD 95 (2017) 054504
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Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function f(T ) which shifts with µ̂, with a simple

T -independent shifting parameter κ. How does Taylor cope with it?

f(T, µ̂) = f(T ′, 0) , T ′ = T (1 + κ µ̂2) ,

We fitted f(T, 0) = a+ b arctan(c(T − d)) to χB2 (T, 0) data for a 48× 12 lattice
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Taylor expanding a sigmoid

� The Taylor expansion seems to have problems reproducing the original function (left)

� A similar picture arises from actual lattice data (right)
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� Problems at T slightly larger than Tpc ⇒ influence from structure in χB6 and χB8
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An alternative approach

We also notice that a very similar scenario appears for:

χS1
µ̂B

(T, µ̂B) = χBS11 (T ′, 0) , χS2 (T, µ̂B) = χS2 (T ′, 0)
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Formulation

� We have observed the µ̂B-dependence seems to amout to a simple T -shift

� However, a simplistic scenario with a single T - independent parameter κ cannot be

sufficient, hence we seek a systematic treatment which can serve as an alternative to

Taylor expansion

� We allow for more than O( µ̂2) expansion of T ′ and letting the coefficients be

T−dependent:

χB1 (T, µ̂B)

µ̂B
= χB2 (T ′, 0) , T ′ = T

(
1 + κ2(T ) µ̂2

B + κ4(T ) µ̂4
B +O( µ̂6

B)
)

� Important: we are simply re-organizing the Taylor expansion via an expansion of the

shift

∆T = T − T ′ =
(
κ2(T ) µ̂2

B + κ4(T ) µ̂4
B +O( µ̂6

B)
)

HotQCD: Bazavov et al. PRD 95 (2017) 054504
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Formulation

1. With a Taylor expansion one has:

χB1 (T, µ̂B)

µ̂B
= χB2 (T, 0) +

1

3!
χB4 (T, 0) µ̂2

B +
1

5!
χB6 (T, 0) µ̂4

B +O( µ̂6
B)

2. On the other hand, with an expansion in ∆T = T − T ′ one can write:

χB1 (T, µ̂B)

µ̂B
= χB2 (T, 0) + ∆T

dχ2

dT
+

1

2
∆T 2 d

2χ2

dT 2
+O(∆T 3) =

= χB2 (T, 0) + κ2(T )T
dχ2

dT
µ̂2
B +

[
T 2

2
κ22(T )

d2χ2

dT 2
+ Tκ4(T )

dχ2

dT

]
µ̂4
B +O( µ̂6

B)

since ∆T = T
(
κ2(T ) µ̂2

B + κ4(T ) µ̂4
B

)
.
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Formulation

Equating same-order terms in the previous expansions one can easily show that:

κ2(T ) =
1

6T

χB4 (T )

χB2
′
(T )

κ4(T ) =
1

360χB2
′
(T )

3

(
3χB2

′
(T )

2
χB6 (T )− 5χB2

′′
(T )χB4 (T )

2
)

· · ·

� The procedure can in principle be carried over systematically

� Higher order terms still suffer from cancellations and can be challenging

� However we can exploit imaginary- µ̂B simulations to extract κn(T )
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Formulation

Similar relations can be derived analogously from:

χS1
µ̂B

(T, µ̂B) = χBS11 (T ′, 0) , χS2 (T, µ̂B) = χS2 (T ′, 0)

yielding:

κBS2 (T ) =
1

6T

χBS31 (T )

χBS11
′
(T )

κBS4 (T ) =
1

360χBS11
′
(T )

3

(
3χBS11

′
(T )

2
χBS51 (T )

−5χBS11

′′
(T )χBS31 (T )

2
)

κS2 (T ) =
1

2T

χBS22 (T )

χS2
′
(T )

κS4 (T ) =
1

24χS2
′
(T )

3

(
χS2

′
(T )

2
χBS42 (T )

−3χS2
′′
(T )χBS22 (T )

2
)
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Determine κn

I. Directly determine κ2(T ) at µ̂B = 0 from:

κ2(T ) =
1

6T

χB4 (T )

χB2
′
(T )

II. From our imaginary- µ̂B simulations ( µ̂Q = µ̂S = 0) we calculate:

T ′ − T
T µ̂2

B

= κ2(T ) + κ4(T ) µ̂2
B +O( µ̂4

B) = K(T )

III. Calculate the quantity K(T,Nτ , µ̂
2
B) for several µ̂2

B and for Nτ = 8, 10, 12

IV. Perform a combined fit of the µ̂2
B and 1/N2

τ dependence of K(T ) at each temperature,

yielding a continuum estimate for the coefficients

⇒ The O(1) and O( µ̂2
B) coefficients of the fit are κ2(T ) and κ4(T )
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Systematics

For an analysis of the systematic uncertainties, we consider:

� 2x scale settings

� 2x choices of µ̂B fitting range ( µ̂B = inπ/8 with n ∈ {0, 3− 5} or n ∈ {0, 3− 6} )

� 3x fit functions. Always linear in 1/N2
τ , and linear, parabolic or 1/linear in µ̂2

B

� 2x splines at µ̂B = 0

for a total of 24x analyses for each T .

At each temperature, the 24x analyses are combined with Akaike weights.
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The results for κ2(T ), κ4(T )

� At low temperatures, there is

agreement with the HRG model result

� As expected, at high temperatures κ2
increases

� The values of κ4 are always compatible

with 0 → we have indication on the

oder of magnuitude
-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 140  160  180  200  220  240

preliminary

κ
n
 (

T
)

T [MeV]

k2
BB

 cont. est.
k4

BB
 cont. est.

k2
BB

 HRG
k4

BB
 HRG

From the results we can tell our initial guess was not far-off:

� κ2(T ) does not vary much over a large T -range

� κ4(T ) is indeed very small

HotQCD: Bazavov et al. PRD 95 (2017) 054504 19/24



The results for κ2(T ), κ4(T )

A similar picture appears for κn describing the shift in χBS11 and χS2
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Thermodynamics at finite (real) µB

Thermodynamic quantities at finite (real) µB can be reconstruted from the same ansazt:

nB(T, µ̂B)

T 3
= χ2

B(T ′, 0)

with T ′ = T (1 + κ2(T ) µ̂2
B + κ4(T ) µ̂4

B).

From the baryon density nB one finds the pressure:

p(T, µ̂B)

T 4
=
p(T, 0)

T 4
+

∫ µ̂B

0

dµ̂′
B

nB(T, µ̂′
B)

T 3

then the entropy, energy density:

s(T, µ̂B)

T 4
= 4

p(T, µ̂B)

T 4
+ T

∂p(T, µ̂B)

∂T

∣∣∣∣
µ̂B

− µ̂B
nB(T, µ̂B)

T 3

ε(T, µ̂B)

T 4
=
s(T, µ̂B)

T 3
− p(T, µ̂B)

T 4
+ µ̂B

nB(T, µ̂B)

T 3
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Thermodynamics at finite (real) µB

For our extrapolation at finite (real) chemical potential we use:

� Continuum extrapolated pressure and entropy density at µ̂B = 0

(from Borsányi et al. PLB 730 (2014) 99)

� Continuum χB2 (T ) at µ̂B = 0 (from Bellwied et al. PRD 92 (2015) 114505)

The last ingredients are the coefficients κn(T ):

� The curves for κ2(T ) and κ4(T ) are the

result of a fit (3rd order polynomial)

� At low-T (T < 135 MeV) we included a few

HRG points to constraint the fit
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Thermodynamics at finite (real) µB

� Including κ4(T ) results in added error, but doesn’t affect the results sensibly

� In any case, errors are under control up to µ̂B ' 3.5

� At the level of the pressure, errors are extremely small (unsurprinsignly)
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Thermodynamics at finite (real) µB

� Including κ4(T ) results in added error, but doesn’t affect the results sensibly

� In any case, errors are under control up to µ̂B ' 3.5

� Quantities more sensitive to the T -dependence like the entropy still show a signal at

very large µ̂B
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Summary

� The EoS for QCD at large chemical potential is highly demanded in HIC community,

especially for hydrodynamic simulations

� Historical approach of Taylor expansion for EoS has shortcomings

� Because of technical/numerical challenges

� Because of phase structure of the theory

� An alternative summation scheme tailored to the specific behavior of relevant

observables seems a better approach

� Just as Taylor, systematically improvable if given sufficient computing power

THANK YOU!
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The results for κ2(T ), κ4(T )

The coefficients κ2(T ) and κ4(T ) calculated on a 243 × 8 lattice vs. our polynomial fit
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