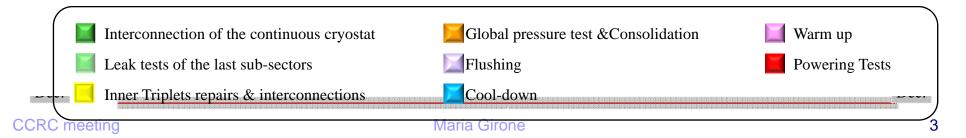
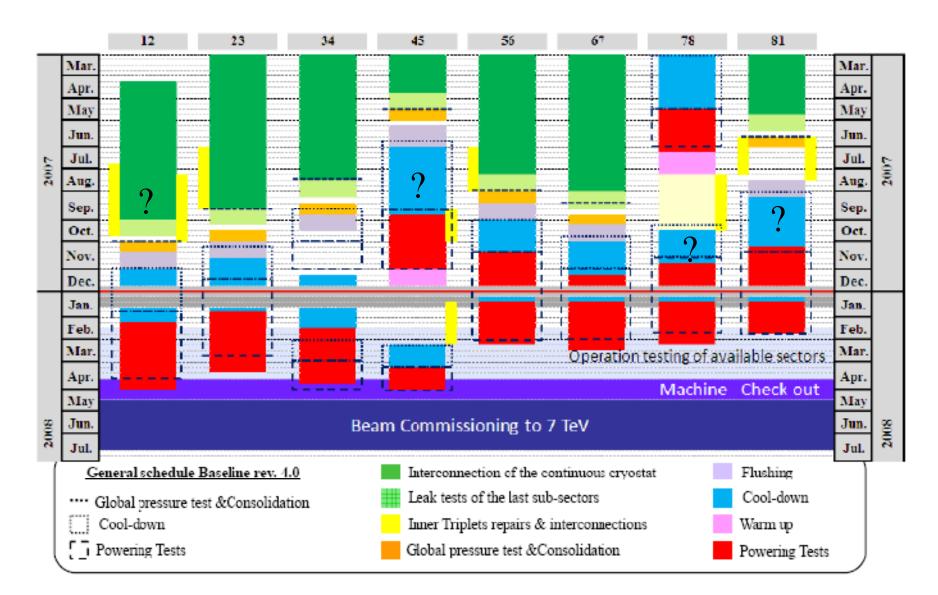
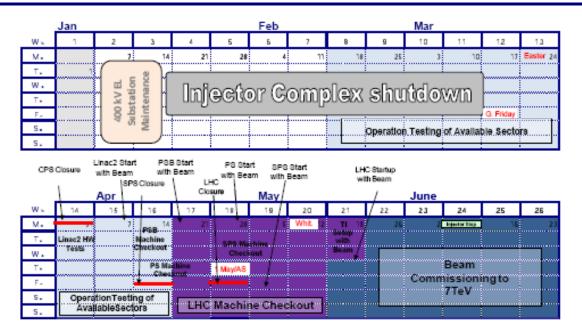

Maria Girone, CERN IT/PSS


based on material from Roger Bailey, CERN AB/OP

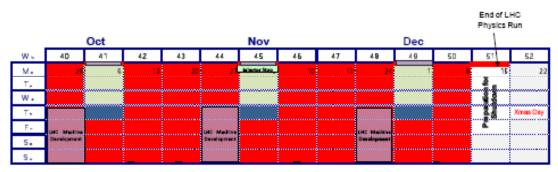
Summary of installation and commissioning


- Procurement problems of remaining components (DFBs, collimators) now settled
- Good progress of installation and interconnection work, proceeding at high pace in tunnel
- Numerous non-conformities intercepted by QA program, but resulting in added work and time
- Technical solutions found for inner triplet problems, but repair of already installed magnets will induce significant delays
- Commissioning of first sectors by isolating faulty triplets, but will have to be re-done with repaired triplets (needing additional warmup/cooldown cycles)
- First sector (sector 78) cooled down to nominal temperature and operated with superfluid helium
- Partial power tests performed in sector 78
- Sector 78 consolidation ongoing (with a few surprises, notably PiMs 6 bad/400) and expected to be complete early November
- Second sector 45 cool down restarted after leaks. Power tests mid-November to Christmas
- Sector 81 leak: the faulty quad is out. Spare is going in

Schedule - rev 4.0 - June Council

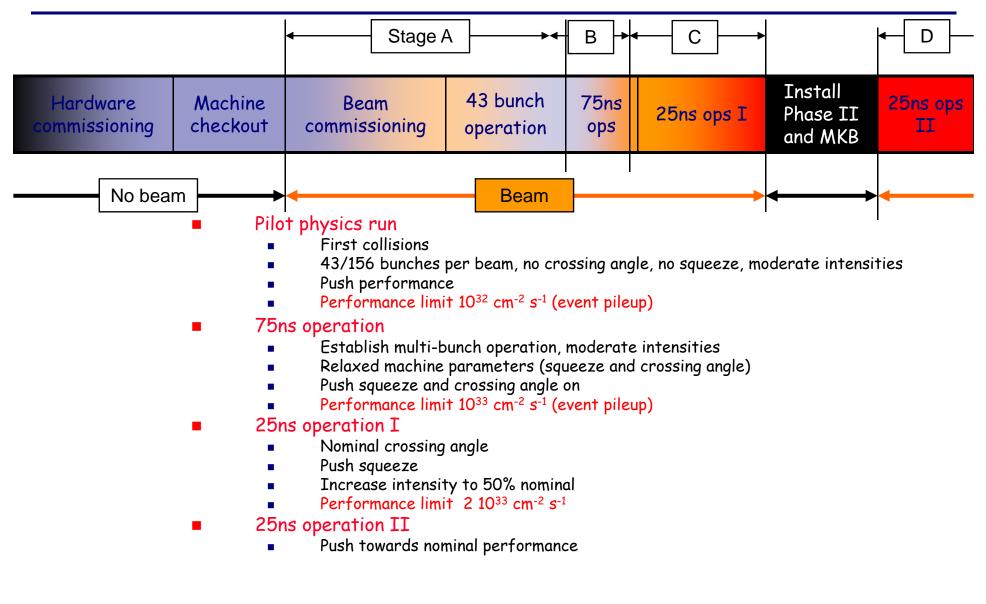


Revised Schedule - August 3rd (last approved) •

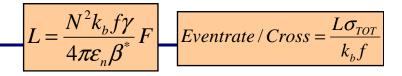


- Priority is to get the machine cold and leak tight
- High parallelism for the power tests (hardware commissioning)
- Problems found at cold cost an additional warmup/cool-down cycle (3 months)
- With the present experience, expect more changes
- Injection test into point 8 may come back on the scene

Schedules - 2008 LHC (draft)



			LH	C Pilot sips Run									
		July				Aug				Sep			
W s	27	28	29	30	31	32	33	34	35	36	37	38	39
M.	30	7	14	21	28	4	Intentor Stop	18	25	1	8	15	22
Τ.													
w.													
T.		Beam		+							Jeune G.		
Ex	Comm	issioni	ngto			IN Marking							
s.		7TeV				Development				Canado presist			
s.													



CCRC meeting

Commissioning strategy for protons

- Approx 30 days of beam time to establish first collisions
 - □ Un-squeezed
 - □ Low intensity
- Approx 2 months elapsed time
 Given optimistic machine availability
- Continued commissioning thereafter
 Increased intensity
 Squeeze

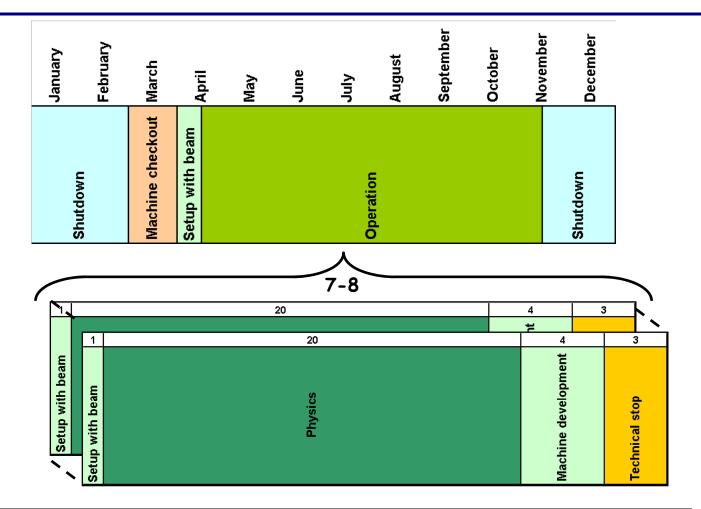
All values for nominal emittance, 7TeV and 10m β^{\star} in points 2 and 8

Pa	Parameters		Beam levels		Rates ir	n 1 and 5	Rates in 2 (and 8)		
k _b	Ν	β* 1,5 (m)	I _{beam} proton	E _{beam} (MJ)	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing	
43	4 10 ¹⁰	11	1.7 1012	2	1.1 10 ³⁰	<< 1	1.2 10 ³⁰	0.15	
43	4 10 ¹⁰	2	1.7 1012	2	6.1 10 ³⁰	0.76	1.2 10 ³⁰	0.15	
156	4 10 ¹⁰	2	6.2 10 ¹²	7	2.2 10 ³¹	0.76	4.4 10 ³⁰	0.15	
156	9 10 ¹⁰	2	1.4 10 ¹³	16	1.1 10 ³²	3.9	2.2 10 ³¹	0.77	
936	4 10 ¹⁰	11	3.7 10 ¹³	42	2.4 10 ³¹	<< 1	2.6 10 ³¹	0.15	
936	4 10 ¹⁰	2	3.7 10 ¹³	42	1.3 10 ³²	0.73	2.6 10 ³¹	0.15	
936	6 10 ¹⁰	2	5.6 10 ¹³	63	2.9 10 ³²	1.6	6.0 10 ³¹	0.34	
936	9 10 ¹⁰	1	8.4 10 ¹³	94	1.2 1033	7	1.3 10 ³²	0.76	
2808	4 10 ¹⁰	11	1.1 1014	126	7.2 10 ³¹	~~ 1	7.9 10 ³¹	0.15	
CCR2808et	n ჭ 10 10	2	1.1 1014	126	M3:8 1037ne	0.72	7.9 10 ³¹	0.15	

- Expect to spend as much time out of physics as in
 Ramp down, cycle, injection, ramp, squeeze, prepare
 Faults, access, other problems
- Will be aiming to
 - Fix faults, give access, solve problems, fill, ramp, squeeze by day
 - Provide colliding beams for physics overnight
 - Averaging a 10h fill per day would be good (40% efficiency for physics)

Conclusions - 2008

- Beam commissioning
 - □ Should start May 2008
 - \square 2 months to get first collisions
 - □ First collisions low intensity, un-squeezed.


Phase A

- □ No crossing angle
- □ Gradual increase in current up to 156 bunches/beam
- Pilot physics: un-squeezed to partial squeeze
- $\Box \le 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- \hfill per day is optimistic at this stage
- Phase B: if things go really well!!
- Collimation
 - □ Phase 1 scheme will be in place
 - \hfill and appropriate machine protection will be pursued

Beam Commissioning to 7 TeV Collisions

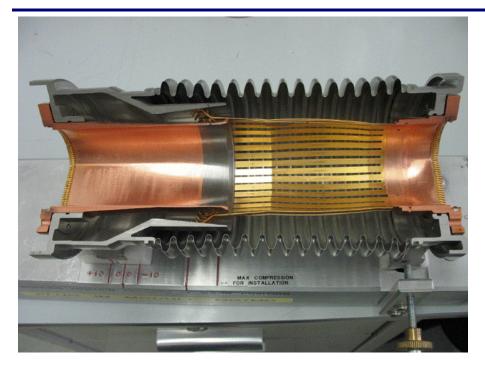
		Rings	Total [days]
1	Injection and first turn	2	4
2	Circulating beam	2	3
3	450 GeV - initial	2	4
4	450 GeV - detailed	2	5
5	450 GeV - two beams	1	1
6	Snapback - single beam	2	3
7	Ramp - single beam	2	6
8	Ramp - both beams	1	2
9	7 TeV - setup for physics	1	2
10	Physics un-squeezed	1	-
	TOTAL TO FIRST COLLISIONS		30
11	Commission squeeze	2	6
12	Increase Intensity	2	6
13	Set-up physics - partially squeezed.	1	2
14	Pilot physics run		

Breakdown of a Normal Year

~ 140-160 days for physics per year Not forgetting ion and TOTEM operation Leaves ~ 100-120 days for proton luminosity running ? Efficiency for physics 50% ?

~ 1200 h or ~ 4 10^6 s of proton luminosity running / year

Every year there will be a long shutdown (3-4 months)


At the end of every shutdown

- Close the machine personnel access system
- Get all equipment ready for beam (machine checkout, ~ 3-4 weeks)
- □ Get machine ready for operation (setup with beam, 2-3 weeks)

During periods of operation

- Need regular technical stops (3 days every month)
 - Interventions need careful but flexible planning
- \Box Get machine ready for operation (1 day)
- □ Machine development (around 15% during first years)
- Operations for physics
- Access as required for unscheduled stops

Interconnect Plug-in Modules Details

Plug-in module in cold position

Same deformations as in sector 7-8

Failure example