COLLIDER SEARCHES FOR SCALAR SINGLETS ACROSS LIFETIMES

NYUAD-WIS Collaboration Meeting, 2020

INBAR SAVORAY

2008.12773 WITH: ELINA FUCHS, OLEKSII MATSEDONSKYI & MATTHIAS SCHLAFFER Advisor: Prof. Gilad Perez

CURRENT INTERESTS

► Ultralight DM precision tests with table top experiments

- CP-violation effects in photon self-interactions
 - ► LUXE
 - ► Cavities

Long-lived particles at colliders

SCALAR SINGLET EXTENSION

► SM+ real singlet

$$V_{\rm s}(\Phi,H) = V(\Phi) + \mu^2(\Phi)H^{\dagger}H + \lambda_h \left(H^{\dagger}H\right)^2$$

- ► Higgs Portal mediator to a dark sector.
- ► Can be a **dark matter** candidate.
- Relaxion dynamically set the Higgs VEV

SINGLET-HIGGS INTERACTIONS

Minimal renormalizable extension

$$V_{\rm s}(\Phi,H) = V(\Phi) + \mu^2(\Phi)H^{\dagger}H + \lambda_h \left(H^{\dagger}H\right)^2$$

$$t\Phi + \frac{1}{2}m_0^2\Phi^2 + \frac{a_{\phi}}{3}\Phi^3 + \frac{\lambda_{\phi}}{4}\Phi^4 - \mu_0^2H^{\dagger}H + 2a_{h\phi}\Phi H^{\dagger}H + \hat{\lambda}_{h\phi}\Phi^2H^{\dagger}H$$

Phenomenologically relevant parameters

NATURAL SCALAR SINGLET EXTENSION

 Additive corrections to the scalar's mass set the minimal mass (no tuning)

NATURAL SCALAR SINGLET EXTENSION

 Additive corrections to the scalar's mass set the minimal mass (no tuning)

COLLIDER SEARCHES ACROSS LIFETIMES

► Wide range of scalar lifetimes - controlled by mass and mixing

► Goal: study these searches at all lifetimes

- Obtain constraints in terms of model parameters
- Compare different search strategies complementarity
- Estimate potential to probe Natural parameter space

PROMPT – DIRECT AND UNTAGGED

► <u>Indirect</u> - Depletion of Higgs decays to SM particles (untagged)

$$\mu_{if} = \frac{\sigma_{i \to h}}{\sigma_{i \to h}^{SM}} \frac{BR_{h \to f}}{BR_{h \to f}^{SM}} = \approx \cos^2 \theta \ BR_{h \to f}^{SM} \left(1 - BR_h^{NP}\right)$$

► <u>Direct</u> - Rare Z decays

DISPLACED

- > Direct searches for Higgs decays into **displaced jets**.
- Longer lifetime production almost mixing independent.
- Reinterpret results for displaced Higgs vertices in terms of model parameters.

DELAYED

Identify long-lived particles by the time delay of the decay product,

$$\Delta t \cdot c = \frac{l_x}{\beta_x} + \frac{l_a}{\beta_a} - \frac{l_{SM}}{\beta_{SM}}$$

- ► Take advantage of the MIP timing detector for the HL-LHC
- Selections are geometrical in terms of the scalar decay length for each event kinematics.
- ► Extend to all masses and lifetimes.
- ► Consider an MTD for the FCCee.

Jia Liu et al., [1805.05957].

INVISIBLE

- ► Direct searches for Higgs decays into missing ET.
- ► Account for the fraction r of scalars decaying outside the detector

$$r = \frac{1}{N} \sum_{i=1}^{N} \exp\left(-\frac{m_{\phi}}{c\tau_{\phi}} \left(\frac{L_{i_1}}{p_{i_1}} + \frac{L_{i_2}}{p_{i_2}}\right)\right)$$

OVERVIEW: 5 GEV SINGLET

invisible <u>displaced/delayed</u>

prompt

OVERVIEW: 25 GEV SINGLET

invisible displaced/delayed prompt

OVERVIEW: NATURAL SINGLET

ZØ LEP2

30

 m_{ϕ} [GeV]

Set
$$\lambda_{h\phi} = m_{\phi}^2/v^2 = \lambda_{h\phi}^{nat.}$$

prompt
h untagged/BSM
Rare Z decays
displaced/delayed
scalar decays in
a displaced vertex
in the detector
invisible
scalar decays
outside the detector

-20

outside the detector

FCCe

10

BSN

BSN

20

14

50

40

THANK YOU!

BACKUP SLIDES

SCALAR SINGLET EXTENSION

> Minimal renormalizable extension - (no Z_2)

$$V_{\rm s}(\Phi,H) = V(\Phi) + \mu^2(\Phi)H^{\dagger}H + \lambda_h \left(H^{\dagger}H\right)^2$$

$$t\Phi + \frac{1}{2}m_0^2\Phi^2 + \frac{a_{\phi}}{3}\Phi^3 + \frac{\lambda_{\phi}}{4}\Phi^4 \qquad -\mu_0^2H^{\dagger}H + 2a_{h\phi}\Phi H^{\dagger}H + \hat{\lambda}_{h\phi}\Phi^2H^{\dagger}H$$

► Relaxion

$$V_{\rm s}(\Phi,H) = V(\Phi) + \mu^{2}(\Phi)H^{\dagger}H + \lambda_{h} (H^{\dagger}H)^{2}$$

$$\downarrow$$

$$rg\Lambda^{3}\Phi - \Lambda^{2}H^{\dagger}H + g\Lambda\Phi H^{\dagger}H - \tilde{M}^{2}\cos\left(\frac{\Phi}{f}\right)H^{\dagger}H$$

INDIRECT – HIGGS COUPLING MODIFIERS

- ➤ The scalar modifies the Higgs' branchings to SM particles
 - Mixing universal modifier of all Higgs couplings

$$\Gamma_{h \to f_{SM}} = \kappa^2 \Gamma_{h \to f_{SM}}^{SM}, \qquad \kappa = \cos \theta_{h\phi}$$

► Additional Higgs decay channels:

$$\Gamma_h^{NP} = \Gamma_h^{in\nu} + \Gamma_h^{unt}$$

- Invisible missing energy
- Untagged visible decay products that are not included in any specific search.
- Constraints given by fits of the signal strength

$$\mu_{if} = \frac{\sigma_{i \to h}}{\sigma_{i \to h}^{SM}} \frac{BR_{h \to f}}{BR_{h \to f}^{SM}} = \kappa^2 \frac{\kappa^2 \Gamma_{h \to f}^{SM}}{\kappa^2 \Gamma_h^{SM} + \Gamma_h^{NP}} \approx \kappa^2 BR_{h \to f}^{SM} \left(1 - BR_h^{NP}\right)$$

IDENTIFYING DISPLACED DECAYS - TIMING

 Identify a secondary vertex by time delay with respect to a prompt light particle (ISR, prompt decay, etc.)

$$\Delta t \cdot c = \frac{l_x}{\beta_x} + \frac{l_a}{\beta_a} - \frac{l_{SM}}{\beta_{SM}},$$

- Main selections: time delay + scalar decays between L1 and L2 + decay product reaches the timing layer - all geometrical in terms of lab-frame scalar decay length.
- ► Efficiency calculation can be reduced to -
 - ► MC generation of event kinematics for each scalar mass (e.g. MadGraph).
 - > Analytically calculating the allowed range for l_{ϕ} for each event kinematics.
 - ► Calculating the event weight for each proper lifetime $w = \exp\left(-\frac{l_{\phi}^{min}}{c\tau\gamma_{\phi}\beta_{\phi}}\right) - \exp\left(-\frac{l_{\phi}^{max}}{c\tau\gamma_{\phi}\beta_{\phi}}\right)$