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A schematic collision event 
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Dynamics at parton level has to be inferred from momentum distribution of  
stable particles. 
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A real collision event at ATLAS 
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An accurate global event reconstruction (determining the 4-momenta of all the stable 
objects, combining the information from all sub-detector components ) is crucial for 
understanding the underlying dynamics.
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Difference between PFlow in ATLAS & CMS 
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arXiv : 1803.06991

CMS combines the track & calorimeter information  

into unified PFlow object and forms PFlow jets.  

ATLAS used calojets by default until now.   

For CMS, the gain from using PFlow is large. 
     - CMS used PFlow from Run-1 

  

ATLAS benefits less from PFlow :  

     - better HCAL resolution 

     - smaller magnetic field 

     - longitudinal segmentation of calorimeter
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Motivation Jet reconstruction and performance using  

particle flow with the ATLAS Detector (1703.10485)  

The existing algorithm as of now : 

Particle-flow algorithm is a generic event

reconstruction technique. Its performance strongly depends on detector design 

Our proposal : 

Implement a deep learning based method

to extract the fraction of neutral energy for each cell in each layer of the ECAL and HCAL 
calorimeter layers.
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https://arxiv.org/pdf/1703.10485.pdf
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A 3-D view for our datasets
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Machine learning task
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We want to regress the neutral energy per cell
Input : 

6 channel image

(Signal + Noise)


Layer1 —> 64 X 64

Layer2 —> 32 X 32

Layer3 —> 32 X 32

Layer4 —> 16 X 16

Layer5 —> 16 X 16

Layer6 —> 8 X 8

       + 

Track Layer

Output : 

6 channel image

(neutral energy frac)


Layer1 —> 64 X 64

Layer2 —> 32 X 32

Layer3 —> 32 X 32

Layer4 —> 16 X 16

Layer5 —> 16 X 16

Layer6 —> 8 X 8

NN model

Levent =
1

Etot ∑
c

Ec( f c
t − f c

d)2

 : Energy of a cell,  

 : target neutral energy fraction 

 : predicted neutral energy fraction

Ec Etot = ∑ Ec

f c
t

f d
c

A simple L2 loss function doesn’t serve the  
purpose, we need to put extra weights on highest  
seed cells inside a topocluster   

A weight factor of  won’t work either .  E
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The neural network architecture (cPFlow)
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The graph network
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Calorimeter showers have natural representation of a point cloud.

Image from 1705.02355 

Each point in the point-cloud has 4 features (x, y, z, E).  
Based on the Euclidean distance among the points, one  
can form a K-nearest-neighbor graph 
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The graph network
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https://arxiv.org/pdf/1801.07829.pdf

(x′ )l+1
i = maxj∈𝒩(i) Θx(xl

j − xl
i ) + Φx(xl

i )

(e′ )l+1
i = meanj∈𝒩(i) Θe(el

j − el
i ) + Φe(el

i )

In a graph, each node can “learn” about the state of neighboring node 
through message passing operation
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Energy response comparison
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Relative Residual = (
Epredicted − Eneutral

Eneutral
)

At low energy the cPFlow has 7X better resolution than traditional PFlow 
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Direction response comparison
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The cPFlow algorithm has much better (upto 6 X) spatial  

resolution than traditional PFlow 

The distance computed in number of cells between the barycenter of the predicted  

and truth neutral energy in the ECAL2 layer. 
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Per cell level performance
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The networks in general have good noise removal abilities. 
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A case for calorimeter super-resolution

A higher resolution calorimeter has the ability to capture multi-prong 
decay pattern in showers.  
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An event display for super-res prediction
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Summary  
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We have demonstrated that a suitable ConvNet, Graph, Deepset architecture gives 

descent energyfraction estimation for the generalized case : 


Input —> Variable Resolution + Noise + Track, Output —> Real resolution. 


The algorithm actually succeeds in yielding a complete image of neutral energy

profile of the layers. 


The trained NN is able to learn and predict the noise pattern. 

  A network trained on topoclusters has better performance on the topoclusters. 


These ML based algorithms are shown to improve the energy and direction 

estimation over existing PFlow algorithm, in case of overlapping

charged and neutral pions.

 3 to 5 times resolution improvement obtained at low energy regime.


Demonstrated the applicability of super-resolution techniques for calorimetric study. 
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