
December 22, 2020

Arka Santra, Noam Tal Hod 
Weizmann Institute of Science 

Rehovot, Israel 
 

The LUXE experiment 
and 

Squeezing High-Mass Dilepton Data in ATLAS

NYUAD and WIS Collaboration



December 22, 2020 Arka Santra

The LUXE Experiment

2



December 22, 2020 Arka Santra

Strong electric fields
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ϵ
V

Electric field ϵ

✦ Spontaneous  pair production in a strong static electric field in Vacuum: prediction of QED.
✦ Schwinger gave the critical field: .


✦  The probability to materialise one virtual  pair from the vacuum:  

e+e−

ϵS = m2
e c3/eℏ ≃ 1.32 ⋅ 1018 V/m
e+e− P ∼ exp (−aϵs/ϵ)

First discussions by Sauter, Heisenberg & Euler

First calculations by Schwinger: ϵS

E144 at SLAC first to approach  (reached )ϵS ϵ → ϵS /4

LUXE: reach  and beyondϵS

1930s

1951

1990s

2020s

✦ Goal of LUXE experiment: 
✦ Effort to reach  and beyond 

✦ Test basic predictions of novel Quantum Mechanics regime

✦ Search for Beyond Standard Model Physics

ϵs

⟶ ∞

 numeric constanta
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A Brief Idea about the LUXE physics
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Laser Und XFEL Experiment

High energy 
electrons 
(XFEL)

High-power laser 
generates 

large E-field

“see” a larger 
field by  

in its rest frame
Eγ /me

✦ Nonlinear Compton scattering:  

✦ Nonlinear pair production:  

e + nγL → e′ +γC

γC+nγL → e+e−

The Letter of Intent

LUXE

XFEL Electron tunnel

LUXE

The European XFEL

DESYϵ → ϵ ×
Eγ

me
∼ ϵ ×

10 GeV
0.5 MeV

∼ ϵ × 104

The rate of laser assisted one photon pair production asymptotically 
 resembles to that of the spontaneous pair production in vacuum.  

Hartin et.al. Phys. Rev. D 99, 036008 (2019)

Ee up to 17.5 GeV,  
Ne = 1.5-6×109 e-/bunch

Ti-Sapphire, =800 nm,  
40 TW(⟶350 TW),  ~1 J(⟶10 J), 

25-200 fs pulse

λL

XFEL fan

https://arxiv.org/abs/1909.00860
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.036008
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Experimental setup
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✦ Physics arriving at the first set of the 
sub-detector. 

e+ e−
12 mm

55 cm

𝓞(109)

Responsibility of WIS
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The  in the  rest frameϵs e+e−

✦Plan to measure the rate  and  


✦Use of dimensionless parameters


✦  Laser intensity parameter: 


✦Quantum parameter: 

ΓγC
Γe+e−

ξ ∝ ϵ/ϵs

χe,γ ∝ (Ee,γ /me)(ϵ/ϵs)

6

E144 Γe+e−

๏Observed the strong rise as  
⟶ still perturbative 

๏Well described by theory 
๏Laser’s peak E-field was 

~0.5×1018 V/m

ξ2n

E144 has 
achieved 
ϵ < ϵs/4

non-perturbative 
range at ξ ≳ 1

Γe+e− → χe−3/(8χ)The “kinematic edges” of the scattered electron depend on 
the number of absorbed laser photonse− + γL : ΓγC

High Intensity Compton Scattering rate

Phys. Rev. D 60, 092004 

ξ

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.60.092004
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Beyond Standard Model search with LUXE
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✦ Axion like particles (ALP): 


✦ Mass  and photon coupling: 

✦ Electron coupling: 

✦ Primakoff production

ℒint = 1
4Λ aFμνF̃μν + gaeaēγ5a

ma 1/Λ
gae

Non-perturbative γC prod. at the IP ALPs production at the target

✦ The ALPs can also be produced at the IP 
✦ Similar for scalars:   
✦ Looking also at milli-charged particles production 

in strong field.

a → ϕ, F̃ → F and γ5 → 1

Plot done with: 
 

 
 

 
 
 

 
 

Ee = 17.5 GeV
Ne = 6 × 109

tL = 200 fs
ξ = 2.43

top = 107 s
RL = 1 Hz
LS = 1 m

Lmax ∼ 5.5 m

LUXE

LUXE is 
the most 
sensitive 

here

— Primary+Secondary photons from 
LUXE dumped on lead

— Secondary photons from XFEL 
electrons dumped on lead

LUXE is a clean 
free-GeV-
photons 
machine
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The LUXE experiment: in a Nutshell
✦ The critical field  will be reached in the centre of mass of the  pair in a clean environment for the first time.


✦ The Strong-field may uncover new physics effects.


✦ The collaboration is small (~50 people).


✦ The timeline is very streamlined (conclude within this decade).

ϵs e+e−

8

LUXE Timeline
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DiLepton ClockWork search @ 
ATLAS

9
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A very brief overview
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✦ The new particles/interactions search is in general a bump/tail hunting.

✦ Very challenging to spot other kind of signals.


✦ Signals with very low event rate

✦ Signals with periodic structure

q̄

q

e−

e+
Z′ 

Clockwork signal

Resonant searches, 2019

Non-Resonant searches, 2020

Phys. Lett. B 796 (2019) 68

JHEP 11 (2020) 005
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 Data, ee selection with Backgroud fit vs Clockwork signal-1139 fb

✦ The Fast Fourier Transformation, being 
one-dimensional, not helpful to point the 
position of the signal.

This signal is invisible 
to our usual searches

https://doi.org/10.1016/j.physletb.2019.07.016
https://link.springer.com/article/10.1007/JHEP11(2020)005?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20201110
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Transformation from Mass space to Frequency space
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Background 
(averaged)

Signal 
(averaged)

✦Continuous wavelet transformation:

✦Preserves the mass window of the signal.

✦ Classify the signal and background using 
cutting edge Neural Networks, e.g. 
Autoencoders.

Continuous Wavelets 
Transform⟶ toy-fit

Not possible to find signal here
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Backup 

13
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Details of the LUXE system
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Electrons
Ee up to 17.5 GeV, with Ne = 1.5-6×109 e-/bunch and a bunch charge up to 1.0 nC,

~1/2700 bunches/train, 1+9 Hz (collisions + background), spot rxy=5 µm, lz=24 µm

Laser

Ti-Sapphire, 800 nm, 40 TW(⟶350),  ~1 J(⟶10), 25-200 fs pulse, 1-10 Hz rate 
 

8×8⟶3×3 µm2 FWHM spot with up to I~ 3.5×1019 W/cm2(⟶1.5×1021), 60% loss 



๏ Laser-assisted one photon pair production, OPPP (SPP ⟶OPPP) 
๏ the laser’s E-field frequency is , with momentum  
๏ the laser’s E-field strength is , with  
๏ The  pair picks up momentum from the laser photons 

๏ OPPP rate is a function of the laser intensity  and the photon recoil :

ω k = (ω, k)

|ϵ | I ∼ |ϵ |2

e+e−

ξ χ

Lasers strong field “how-to”

15

Initial photon : ki = (ωi, ki) ΓOPPP =
αm2

e

4ωi
F(ξ, χγ)

Laser intensity : ξ =
e |ϵ |
ωme

=
me

ω
|ϵ |
ϵS

Photon recoil : χγ =
k ⋅ ki

m2
e

ξ = (1 + cos θ)
ωi

me

|ϵ |
ϵS

{Dimensionless and 
Lorentz-invariant



Understanding ξ
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e−

The electron’s maximum velocity is: vmax = a ⋅ Δt =
eE
me

⋅
1
ω

Electron “at rest”

The electron will oscillate with frequency  and radiate in turn: ω eE = mea

Normalise to c:    (dimensionless & Lorentz-invariant)ξ ≡
vmax

c
=

eE
ωmec

 reaches unity for e.g. a  nm laser at an intensity of  W/cm2ξ λ = 800 I ∼ 1018

Infinite E-field plane 
wave with frequency ω



Understanding χ
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θ

cos(π − θ) = − cos θ

π-θ

ω

e/γ

Scattering geometry: k ⋅ ki = ωωi − |k | |ki |cos(π − θ) = ωωi (1 + cos θ)

χ =
k ⋅ ki

m2
e

ξ =
ωωi (1 + cos θ)

m2
e

eϵ
ωmec

= (1 + cos θ)
ωi

me

ϵ
ϵS

1
ϵS

=
e

m2
e

ℏ = c = 1

Recoil parameter: χ =
k ⋅ ki

m2
e

ξ = (1 + cos θ)
ωi

me

|E |
Ec



OPPP rate: ΓOPPP ∝ F(ξ, χγ)
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Jn are Bessel functionsSum on number of 
absorbed laser γ’s

threshold number 
of absorbed γ’s

Assumption1: the laser E-field is a circularly polarised infinite plane wave 
Assumption2: we can produce a mono-energetic photon beam with ~O(10 GeV)

As the laser intensity  increases 
๏ the threshold number of absorbed photons increases 
๏ more terms in the summation drop out of the probability

ξ



๏ Electron motion in a circularly polarised field, , with frequency : 
๏ Force:  
๏ Velocity:  
๏ Momentum:  
๏ Energy:  
๏ Mass shift: 

 
๏ The 4-momentum of the electron inside an EM wave is altered due to 

continuous absorption and emission of photons 
๏ the ︎laser ︎ photon 4-momentum is:  
๏ outside the field, the (free) charged particle 4-momentum is: ︎  
๏ inside the field, the effective 4-momentum ︎ ( ) ︎ and mass are: 

 

ϵL ωL

F⊥ = eϵL = mea = mev2/R ⟹ R = mev2/eϵL

v = ωLR = ωLmev2/eϵL ⟹ v = eϵL /ωLme = ξ
p⊥ = mev = meξ

E = m2
e + ⃗p 2 = m2

e + p2
⊥ + p2

∥ = m2
e (1 + ξ2) + p2

∥ = m̄2
e + p2

∥

me ⟶ m̄e = me 1 + ξ2

kμ

pμ

qμ

qμ = pμ +
ξ2m2

e

2(k ⋅ p)
kμ ⇒ m̄e = qμqμ = me 1 + ξ2

Mass shift

19



๏ if  is the number of absorbed laser photons in the nonlinear Compton process, 
the energy-momentum conservation:  

๏ The maximum value for the scattered photon energy, ︎, corresponds to the 
minimum energy, or, “kinematic edge” of the scattered electron. it depends on 
the number of absorbed laser photons: 

, where  

๏ This energy decreases with increasing number of photons absorbed 

๏ The electron is effectively getting more massive with  and recoils less 
๏ the min energy of the scattered electron (kinematic edge) is higher

n
qμ + nkμ = q′ μ + k′ μ

ω′ 

ω′ min =
ω

1 + 2n(k ⋅ p)/m̄2
e

m̄e = me 1 + ξ2

ξ

Mass shift ⟶ kinematic edge

20



๏ With increasing laser intensity : 
๏ higher order (n) contributions become more prominent 
๏ edge shifts to lower energies due to electron’s higher effective mass

ξ

Compton edges

21

The rate is a series of 
Compton edges for 
n=1,2,3,… absorbed 
photons

edge shifts down with increasing ξ



๏ 46.6 GeV electron beam 
๏ 5×109 electrons per bunch 
๏ Bunch rates up to 30 Hz 
๏ Terawatt laser pulses 
๏ Intensity of ~0.5×1018 W/cm2 
๏ Frequency of 0.5 Hz for 

wavelengths 1053 nm, 527 nm 
๏ electrons-laser crossing angle: 17º

History: E144 @ SLAC

22

E144 at SLAC 
during the 90s

OPPP only!
Phys.Rev. D60 (1999) 092004
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History: E144 @ SLAC

1/χγ =

1/14 ≤ χγ ≤ 1/6

ξ =

0.2 ≤ ξ ≤ 0.4

Phys.Rev. D60 (1999) 092004

OPPP only!



๏ Measured non-linear Compton scattering 
with  photons absorbed and pair 
production (with ) 

๏ Observed the strong rise  but not 
asymptotic limit (still perturbative) 

๏ Measurement well described by theory 

๏ Large uncertainty on the laser intensity 

๏ Did not achieve the critical field - the 
peak E-field of the laser: 0.5×1018 V/m

n = 4
n = 5

∼ ξ2n

24

History: E144 @ SLAC
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0.2 ≤ ξ ≤ 0.4
1/14 ≤ χγ ≤ 1/6{E144 should be  

somewhere here

the ~probability of laser-assisted OPPP
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Details Of milli-Charged Particle Search at the LUXE

From Yotam Soreq
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Details Of milli-Charged Particle Search at the LUXE

From Yotam Soreq
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Clockwork theory in a nutshell
✦Mechanism for generating light particles with exponentially suppressed interactions in theories with no small parameters at the 

fundamental level. Can be implemented as a discrete set of new fields or through an extra spatial dimension in its continuum version. 
Exhibits novel phenomenology with a distinctive spectrum of closely spaced resonances. 

✦The most exciting application is the clockwork graviton, offering a novel solution to the naturalness problem of the electroweak scale and 
providing a dynamical explanation for the weakness of gravity 
✦In one implementation, the theory describes a tower of massive spin-two particles, which can be interpreted either as the Kaluza-Klein 

excitations of the 5D graviton or as the continuum version of the clockwork gears 
✦This theory has only two parameters: the fundamental gravity scale M5 and the mass k 
✦Here, R does not measure the proper size of the extra dimension, which is much larger than its natural value 1/M5. As a result, the 

hierarchy MP/M5 is explained by a combination of volume (as in LED) and warping (as in RS): , while to 
account for the hierarchy one needs  

✦The KK gravitons masses are  with  and they couple to the SM stress-energy tensor as: 
 where  and  

✦The zeroth mode is the massless graviton, while the rest of the KK modes appear after a mass gap of order k and their couplings to the 
SM are not suppressed by MP. 

✦The KK modes form a narrowly-spaced and approximately periodic spectrum above the mass gap with splittings greater than or 
comparable to the experimental resolution in the range of interest 

✦The near-periodicity of mass distributions is with characteristic separations in the 1-5% range

M2
P = (M3

5 /k) (e2πkR − 1)
kR ≃ 10

m0 = 0, m2
n = k2 + (n/R)2 n = 1,2,3,...

ℒ ∼ − (1/Λ(n)
G )h̃(n)

μν Tμν Λ(0)
G = MP Λ(n)2

G = M3
5πR (1 + (kR/n)2)



In dileptons
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Continuous Wavelet Transformation
✦ Assume ψ(t) is a basis function localized in both time and frequency space. 
✦ The Continuous Wavelet Transformation  of a signal  at a scale  and translational parameter 

 is given by a projection over rescaled and shifted version of ψ(t):  

✦ In practice, it is a measure of how much a certain frequency is present in the signal at a given time. 

✦ Mother wavelet  is required to have:  and 

✦ Morlet wavelet as : .

f(t) a > 0
b ∈ ℛ

W(a, b) =
1

a ∫
+∞

−∞
f(t) ψ* ( t − b

a ) dt

ψ(t) ∫
+∞

−∞
|ψ(t) |2 dt < ∞ cψ ≡ 2π∫

+∞

−∞

|ψ(ω) |2

|ω |
dω < ∞

ψ ψ(t) ≡
1

Bπ
e−t2/B (ei2πCt − e−π2BC2)

29

Eur. Phys. J. C 80, 192 (2020)

https://doi.org/10.1140/epjc/s10052-020-7746-8


Working in Frequency domain

Background toy Signal toy Neural Net
{ {Thousands 

of these…

NN output used as test statistic

๏ this is std feedforward NN 
๏ will move to auto-encoders

predictinterpret


