The LUXE experiment and Squeezing High-Mass Dilepton Data in ATLAS

NYUAD and WIS Collaboration

Arka Santra, Noam Tal Hod
Weizmann Institute of Science
Rehovot, Israel

The LUXE Experiment

Strong electric fields

\checkmark Spontaneous $e^{+} e^{-}$pair production in a strong static electric field in Vacuum: prediction of QED.
\checkmark Schwinger gave the critical field: $\epsilon_{\mathrm{S}}=m_{e}^{2} c^{3} / e \hbar \simeq 1.32 \cdot 10^{18} \mathrm{~V} / \mathrm{m}$.
\checkmark The probability to materialise one virtual $e^{+} e^{-}$pair from the vacuum: $P \sim \exp \left(-a \epsilon_{s} / \epsilon\right)$
a numeric constant

Goal of LUXE experiment:

\uparrow Effort to reach ϵ_{s} and beyond
\checkmark Test basic predictions of novel Quantum Mechanics regime
> Search for Beyond Standard Model Physics

A Brief Idea about the LUXE physics

The rate of laser assisted one photon pair production asymptotically \downarrow Nonlinear Compton scattering: $e+n \gamma_{L} \rightarrow e^{\prime}+\gamma_{C}$ resembles to that of the spontaneous pair production in vacuum.

Hartin et.al. Phys. Rev. D 99, 036008 (2019)

\checkmark Nonlinear pair production: $\gamma_{C}+n \gamma_{L} \rightarrow e^{+} e^{-}$

generates
gener
large E-field

Ti-Sapphire, $\lambda_{L}=800 \mathrm{~nm}$, 40 TW $(\longrightarrow 350 \mathrm{TW}), ~ \sim 1 \mathrm{~J}(\longrightarrow 10 \mathrm{~J})$,

25-200 fs pulse

Experimental setup

Backscattering calorimeter

$>$ Physics arriving at the first set of the sub-detector.
e-laser setup (Not in scale)

Shielding
\longrightarrow
LANEX screen \qquad Cherenkov counter
Dipole magnet 2
γ-converter
Shielding

- Absorber
 herenkov counter
$1 \quad\} e^{-}$system

Dipole magnet 1

The ϵ_{s} in the $e^{+} e^{-}$rest frame

Plan to measure the rate $\Gamma_{\gamma_{C}}$ and $\Gamma_{e^{+} e^{-}}$
Use of dimensionless parameters

E144 has achieved
$\epsilon<\epsilon_{s} / 4$

$e^{-}+\gamma_{L}: \Gamma_{\gamma C}$
The "kinematic edges" of the scattered electron depend on the number of absorbed laser photons

Beyond Standard Model search with LUXE

The LUXE experiment: in a Nutshell

\checkmark The critical field ϵ_{s} will be reached in the centre of mass of the $e^{+} e^{-}$pair in a clean environment for the first time.
\checkmark The Strong-field may uncover new physics effects.
$>$ The collaboration is small (~ 50 people).
\checkmark The timeline is very streamlined (conclude within this decade).

LUXE Timeline

DiLepton ClockWork search @ ATLAS

A very brief overview

The new particles/interactions search is in general a bump/tail hunting.

- Very challenging to spot other kind of signals.
$>$ Signals with very low event rate
\checkmark Signals with periodic structure
$139 \mathrm{fb}^{-1}$ Data, ee selection with Backgroud fit vs Clockwork signal

This signal is invisible to our usual searches
\checkmark The Fast Fourier Transformation, being one-dimensional, not helpful to point the position of the signal.

Transformation from Mass space to Frequency space

Backup

Details of the LUXE system

Electrons	E_{e} up to $\mathbf{1 7 . 5} \mathbf{~ G e V}$, with $\boldsymbol{N}_{\boldsymbol{e}}=\mathbf{1 . 5 - 6 \times 1 0}{ }^{\mathbf{9}} \boldsymbol{e}^{-} / \mathbf{b u n c h}$ and a bunch charge up to 1.0 nC ,
	$\sim 1 / 2700$ bunches/train, $1+9 \mathrm{~Hz}$ (collisions + background), spot $\mathrm{r}_{\mathrm{xy}}=5 \mu \mathrm{~m}, \mathrm{l}_{\mathrm{z}}=24 \mu \mathrm{~m}$
Laser	Ti-Sapphire, $800 \mathrm{~nm}, 40 \mathbf{T W}(\longrightarrow 350), \sim \mathbf{1}(\longrightarrow 10), 25-200$ fs pulse, $1-10 \mathrm{~Hz}$ rate
	$8 \times 8 \longrightarrow 3 \times 3 \mu \mathrm{~m}^{2}$ FWHM spot with up to $\boldsymbol{I} \sim \mathbf{3 . 5} \times \mathbf{1 0}^{\mathbf{1 9}} \mathbf{W} / \mathbf{c m}^{2}\left(\longrightarrow 1.5 \times 10^{21}\right), 60 \%$ loss

Lasers strong field "how-to"

\bullet Laser-assisted one photon pair production, OPPP (SPP $\longrightarrow \mathrm{OPPP}$)

- the laser's E-field frequency is ω, with momentum $k=(\omega, \mathbf{k})$
- the laser's E-field strength is $|\epsilon|$, with $I \sim|\epsilon|^{2}$
- The $e^{+} e^{-}$pair picks up momentum from the laser photons
- OPPP rate is a function of the laser intensity ξ and the photon recoil χ :

Understanding ξ

The electron will oscillate with frequency ω and radiate in turn: $e E=m_{e} a$

The electron's maximum velocity is: $v_{\max }=a \cdot \Delta t=\frac{e E}{m_{e}} \cdot \frac{1}{\omega}$

Normalise to $c: \xi \equiv \frac{v_{\text {max }}}{c}=\frac{e E}{\omega m_{e} c}$ (dimensionless \& Lorentz-invariant)
ξ reaches unity for e.g. a $\lambda=800 \mathrm{~nm}$ laser at an intensity of $I \sim 10^{18} \mathrm{~W} / \mathrm{cm}^{2}$

Understanding χ

$$
\text { Recoil parameter: } \chi=\frac{k \cdot k_{i}}{m_{e}^{2}} \xi=(1+\cos \theta) \frac{\omega_{i}}{m_{e}} \frac{|\mathbf{E}|}{E_{c}}
$$

Scattering geometry: $k \cdot k_{i}=\omega \omega_{i}-|\mathbf{k}|\left|\mathbf{k}_{i}\right| \cos (\pi-\theta)=\omega \omega_{i}(1+\cos \theta)$

$$
\chi=\frac{k \cdot k_{i}}{m_{e}^{2}} \xi=\frac{\omega \omega_{i}(1+\cos \theta)}{m_{e}^{2}} \frac{e \epsilon}{\omega m_{e} c}=(1+\cos \theta) \frac{\omega_{i}}{m_{e}} \frac{\epsilon}{\epsilon_{\mathrm{S}}} \longleftarrow \frac{1}{\epsilon_{\mathrm{S}}}=\frac{e}{m_{e}^{2}}
$$

OPPP rate: $\Gamma_{\text {oppp }} \propto F\left(\xi, \chi_{\gamma}\right)$

$$
n_{0} \equiv \frac{2 \xi\left(1+\xi^{2}\right)}{\chi_{\gamma}}, \quad z_{v} \equiv \frac{4 \xi^{2} \sqrt{1+\xi^{2}}}{\chi_{\gamma}}\left[v\left(v_{n}-v\right)\right]^{1 / 2}, \quad v_{n} \equiv \frac{\chi_{\gamma} n}{2 \xi\left(1+\xi^{2}\right)}
$$

threshold number
of absorbed γ 's
As the laser intensity ξ increases

- the threshold number of absorbed photons increases
- more terms in the summation drop out of the probability

Mass shift

- Electron motion in a circularly polarised field, ϵ_{L}, with frequency ω_{L} :
- Force: $F_{\perp}=e \epsilon_{L}=m_{e} a=m_{e} \nu^{2} / R \Longrightarrow R=m_{e} \nu^{2} / e e_{L}$
- Velocity: $v=\omega_{L} R=\omega_{L} m_{e} \nu^{2} / e \epsilon_{L} \Longrightarrow v=e e_{L} / \omega_{L} m_{e}=\xi$
- Momentum: $p_{\perp}=m_{e} v=m_{e} \xi$
- Energy: $E=m_{e}^{2}+\vec{p}^{2}=m_{e}^{2}+p_{\perp}^{2}+p_{\|}^{2}=m_{e}^{2}\left(1+\xi^{2}\right)+p_{\|}^{2}=\bar{m}_{e}^{2}+p_{\|}^{2}$
- Mass shift:

$$
m_{e} \longrightarrow \bar{m}_{e}=m_{e} \sqrt{1+\xi^{2}}
$$

- The 4-momentum of the electron inside an EM wave is altered due to continuous absorption and emission of photons
- the laser photon 4-momentum is: k_{μ}
- outside the field, the (free) charged particle 4-momentum is: p_{μ}
\bigcirc inside the field, the effective 4-momentum $\left(q_{\mu}\right)$ and mass are:

$$
q_{\mu}=p_{\mu}+\frac{\xi^{2} m_{e}^{2}}{2(k \cdot p)} k_{\mu} \Rightarrow \bar{m}_{e}=\sqrt{q_{\mu} q^{\mu}}=m_{e} \sqrt{1+\xi^{2}}
$$

Mass shift \longrightarrow kinematic edge

- if n is the number of absorbed laser photons in the nonlinear Compton process, the energy-momentum conservation: $q_{\mu}+n k_{\mu}=q_{\mu}^{\prime}+k_{\mu}^{\prime}$
- The maximum value for the scattered photon energy, ω^{\prime}, corresponds to the minimum energy, or, "kinematic edge" of the scattered electron. it depends on the number of absorbed laser photons:
$\omega_{\min }^{\prime}=\frac{\omega}{1+2 n(k \cdot p) / \bar{m}_{e}^{2}}$, where $\bar{m}_{e}=m_{e} \sqrt{1+\xi^{2}}$
- This energy decreases with increasing number of photons absorbed
- The electron is effectively getting more massive with ξ and recoils less - the min energy of the scattered electron (kinematic edge) is higher

Compton edges

- With increasing laser intensity ξ :
- higher order (n) contributions become more prominent
- edge shifts to lower energies due to electron's higher effective mass

The rate is a series of Compton edges for $\mathrm{n}=1,2,3, \ldots$ absorbed photons

History: E144@ SLAC

E144 at SLAC during the 90s

Phys.Rev. D60 (1999) 092004

- 46.6 GeV electron beam
- 5×10^{9} electrons per bunch
- Bunch rates up to 30 Hz
- Terawatt laser pulses
- Intensity of $\sim 0.5 \times 10^{18} \mathrm{~W} / \mathrm{cm}^{2}$
- Frequency of 0.5 Hz for wavelengths $1053 \mathrm{~nm}, 527 \mathrm{~nm}$ - electrons-laser crossing angle: 17°

History: E144@ SLAC

OPPP only!

FIG. 44. The dependence of the positron rate per laser shot on the laser field-strength parameter η. The line shows a power law fit to the data. The shaded distribution is the 95% confidence limit on the residual background from showers of lost beam particles after subtracting the laser-off positron rate

FIG. 49. Number of positrons per laser shot as a function of $1 / \Upsilon_{\gamma}$. The circles are the 46.6 GeV data whereas the squares are the 49.1 GeV data. The solid line is a fit to the data.

History: E144@ SLAC

- Measured non-linear Compton scattering with $n=4$ photons absorbed and pair production (with $n=5$)
- Observed the strong rise $\sim \xi^{2 n}$ but not asymptotic limit (still perturbative)
- Measurement well described by theory
- Large uncertainty on the laser intensity
- Did not achieve the critical field - the peak E-field of the laser: $0.5 \times 10^{18} \mathrm{~V} / \mathrm{m}$

Details Of milli-Charged Particle Search at the LUXE

$$
\mathscr{L}_{\text {int }}=e q \bar{\chi} \gamma^{\mu} \chi A_{\mu} \quad \text { mass }-m_{\chi}, \text { fractional charge }-q
$$

similar production as $e^{+} e^{-}$

$$
m_{e} \rightarrow m_{\chi}, e \rightarrow q e
$$

Schwinger critical field

$$
\begin{gathered}
\frac{\mathscr{E}_{\mathrm{cr}}^{\chi}}{\mathscr{E}_{\mathrm{cr}}^{e}}=\frac{10^{-6}}{q}\left(\frac{m_{\chi}}{0.5 \mathrm{keV}}\right)^{2} \\
\mathscr{E}_{\mathrm{cr}}^{e / \chi}=m_{e / x}^{2} / e q
\end{gathered}
$$

similar to SLAC mCP PRL, 1998

$$
\mathscr{L}_{\mathrm{int}}=e q \bar{\chi} \gamma^{\mu} \chi A_{\mu}
$$

(a)

Clockwork theory in a nutshell

Mechanism for generating light particles with exponentially suppressed interactions in theories with no small parameters at the fundamental level. Can be implemented as a discrete set of new fields or through an extra spatial dimension in its continuum version.
Exhibits novel phenomenology with a distinctive spectrum of closely spaced resonances.
The most exciting application is the clockwork graviton, offering a novel solution to the naturalness problem of the electroweak scale and providing a dynamical explanation for the weakness of gravity
-In one implementation, the theory describes a tower of massive spin-two particles, which can be interpreted either as the Kaluza-Klein excitations of the 5D graviton or as the continuum version of the clockwork gears
This theory has only two parameters: the fundamental gravity scale M_{5} and the mass k
\checkmark Here, R does not measure the proper size of the extra dimension, which is much larger than its natural value $1 / M_{5}$. As a result, the hierarchy M_{P} / M_{5} is explained by a combination of volume (as in LED) and warping (as in RS): $M_{\mathrm{P}}^{2}=\left(M_{5}^{3} / k\right)\left(e^{2 \pi k R}-1\right)$, while to account for the hierarchy one needs $k R \simeq 10$
\checkmark The KK gravitons masses are $m_{0}=0, m_{n}^{2}=k^{2}+(n / R)^{2}$ with $n=1,2,3, \ldots$ and they couple to the SM stress-energy tensor as: $\mathscr{L} \sim-\left(1 / \Lambda_{G}^{(n)} \tilde{h}_{\mu \nu}^{(n)} T^{\mu \nu}\right.$ where $\Lambda_{G}^{(0)}=M_{\mathrm{P}}$ and $\Lambda_{G}^{(n) 2}=M_{5}^{3} \pi R\left(1+(k R / n)^{2}\right)$
The zeroth mode is the massless graviton, while the rest of the KK modes appear after a mass gap of order k and their couplings to the SM are not suppressed by M_{P}.
The KK modes form a narrowly-spaced and approximately periodic spectrum above the mass gap with splittings greater than or comparable to the experimental resolution in the range of interest
The near-periodicity of mass distributions is with characteristic separations in the 1-5\% range

In dileptons

Continuous Wavelet Transformation

- Assume $\psi(t)$ is a basis function localized in both time and frequency space.
\checkmark The Continuous Wavelet Transformation of a signal $f(t)$ at a scale $a>0$ and translational parameter $b \in \mathscr{R}$ is given by a projection over rescaled and shifted version of $\psi(t)$:

$$
W(a, b)=\frac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} f(t) \psi^{*}\left(\frac{t-b}{a}\right) d t
$$

\uparrow In practice, it is a measure of how much a certain frequency is present in the signal at a given time.
\triangleleft Mother wavelet $\psi(t)$ is required to have: $\int_{-\infty}^{+\infty}|\psi(t)|^{2} d t<\infty$ and $c_{\psi} \equiv 2 \pi \int_{-\infty}^{+\infty} \frac{|\psi(\omega)|^{2}}{|\omega|} d \omega<\infty$
\downarrow Morlet wavelet as $\psi: \psi(t) \equiv \frac{1}{\sqrt{B \pi}} e^{-t^{2} / B}\left(e^{i 2 \pi C t}-e^{-\pi^{2} B C^{2}}\right)$.

Working in Frequency domain

Background toy

Signal toy
Neural Net

NN output used as test statistic

