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DireXeno

Directional and temporal pattern
of scintillation from liquid xenon

By: Gera Koltman



Experiments with liquid xenon

In dark matter searches: In neutrino detectors:
e XENON e EXO

o |UX e KamLAND-Zen

e PandaX o NEXT

e XMASS °

o



Interaction of a high energy particle in liquid xenon
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e Recombination of electron ion pairs produce additional excimers.
e Excimers emit VUV photons when de-excite.




Discrimination between ERs and NRs

ERs: ei,,ui,’y...

NRs: N, v, Dark Matter (?). ..

ﬁ

Drift time
indicates depth

Outgoing L S1
Particle

Incoming
Particle

Picture from: Vitaly, Recent Results from LUX and Prospects for Dark Matter Searches with LZ.
s



Electronic Recoil:

Low energy transfer — large track — low ionization density — easy to extract electrons from
interaction cite.

Nuclear Recoil:

High energy transfer —. short track — high ionization density . hard to extract electrons from
interaction cite.

Why do we care?

ERs: e, u*,v... NRs: N,v,Dark Matter (?). ..



Bottom line

e lonization + excitation signal — Energy of interaction.
e lonization / excitation signal —= Interaction type (ER or NR).

(Not so straight forward) Scintillation model dependent issues:

e How much energy lost for heat?

e What is ionization to excitation branching ratio? How its depends on energy and interaction type?

e How much ionized electrons recombine despite the electric field? How its depends on energy and
interaction type?

Accurate Scintillation model is crucial for liquid xenon based detectors.



DireXeno (Directional Xenon)

Objective: studying the temporal and directional scintillation pattern
from liquid xenon.
e Method: Estimate each photon’s time of emission and its direction.

e Goal: Produce an accurate scintillation model.

e Discover: hypothetical Superradiant emission where there is a

directional correlation between the photons on a sub ns scale.
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Irradiation
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Scintillation spectra
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Signal reconstruction

The temporal resolution is ~Tns
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Temporal structure of scintillation

The average number of
PEs resolved (normalized)
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The average number of photons that were resolved at a given time




Temporal model

e Excimers may be in two states: singlet and triplet.
e The singlet decay fast ~ 2-4 ns.
e The triplet decay slow ~ 25-40 ns.

I (t) — F e_t/Tfast : 1-F e_t/Tslo'w
exr Tfast Tslow
e Recombination has a characteristic time of ~ 45 ns. Temporal pattern

of recombination
txri7 — =\ 17
I(t) =(1—R)I;(t) + R [, Y (t)Ice (t — t)dt




Temporal structure of scintillation for NRs

Neutrons (log scale)
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Possibly a third component which is
manifested only in low energies, maybe
it's the recombination signal.




Temporal structure of scintillation for ERs
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