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Jet flavour tagging:
identifying the quark flavour at the origin of the jet
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* Classifiers were built on human-designed discriminating
“high level” features.
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* In recent years, classifiers are using the raw reconstructed tracks/
vertices in the jet - in addition to the high level features.
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 We look at techniques for using ML in the actual reconstruction,
using the more of the “truth information” we have in the simulation
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The Task - secondary vertex finding

. We want to learn a function from R>%n — R™X1
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e The function from R™4» — R™"X1 5 equivariant -
If we permeate the inputs the output undergoes a
similar permutation
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Abstract

Many problems in machine learning can be cast as leaming functions from sets to
graphs, or more generally to hypergraphs: in short, Set2Graph fu Examples
include clustering. leaming vertex and edge features on graphs, and learning
features on triplets in a collection.
A natural approach for building Set2Graph models is to characterize all linear
equivanant set-lo-hype h layers and stack them with non-linear activations.
This poses two challe (1) the expressive power of these networks is not

| understood; and (ii) these m s would suffer from high, often intractable

stational and memory complexity, as their dimen y

s paper advocates a family of neural network mod, carning Set2Graph
functions that is both pra nd of maximal expressive power (universal), that
is, can approximate arbitrary continuous Sraph functions over compact sets
Testing these models on different machine learning tasks, mainly an application to
particle physics, we find them favorable to existing baselines

1 Introduction

‘We consider the problem of leaming functions taking
sets of vectors in B to graphs, or more generally hy-
pergraphs: we name this problem Set2Graph. or set-
to-graph. Set-to-graph functions appear in machine-
learning applications such as clustering, predicting
features on edges and nodes in graphs, and learning
k-edge information in sets

Mathematically, we represent each set-to-graph

unction learns features
en an input set A’
we consider functions F* at

Figure 1: Set-to-graph functions a
sented as collections of set-to-k-edge
tions.

e, ) is assigned with an output vector

The idea of the proof of universality of the model:

« Any continuous equivariant function G from set to k-edges can be approximated by an
equivariant polynomial P*(X)

« This polynomial has a very specific structure because it is equivariant

«  We can build our neural network model to match this structure of PX(X)
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The model has the form w(f(¢(X)))

@ is an equivariant set to set function

[ is a broadcasting layer, it forms all the possible k-
tuples of nodes

yw is an MLP that operates on each edge/hyperedge to
produce the final output




The model has the form w(f(¢(X)))

@ is an equivariant set to set function

[ is a broadcasting layer, it forms all the possible k-
tuples of nodes
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Abstract Jet classification is an important ingredient in mea-
surements and searches for new physics at particle coliders,
and secondary vertex reconstruction is a key intermediate
step in building powerful jet classifiers. We use a neural net-
work to perform vertex finding inside jets in order to im-
prove the classification performance, with a focus on sep-
aration of bottom vs. charm flavor tagging. We implement
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Vertex

a novel, universal set-to-graph model, which takes into ac-
count information from all tracks in a jet to determine if
pairs of tracks originated from a common vertex. We explore
different performance metrics and find our method to out-
perform traditional approaches in accurate secondary vertex
reconstruction.
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Fig. 1: Illustration of a jet with secondary decay vertices. In
order to identify the flavor of the jet, vertex reconstruction
aims to group together the tracks measured in the detector
based on their point of origin.

1 Introduction

Identifying jets containing bottom and charm hadrons and
separating them from jets that originate from lighter quarks,
is a critical task in the LHC physics program, referred to as

ping". Bottom and charm jets are characterized
by the presence of secondary decays "inside" the jet - the
bottom and charm hadrons will decay several millimeters
past the primary interaction point (primary vertex), and only
stable outgoing particles will be measured by the detector.
Figure | illustrates a typical bottom jet decay, with two con-
secutive displaced vertices from a bottom decay (blue lines)
and charm decay (yellow lines).
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refers to estimating the vertex positions given each sub-set
of tracks. Existing algorithms typically use an iterative pro-
cedure of finding and fitting to perform both tasks together.
We focus on using a neural network for vertex finding only.
Vertex finding is a challenging task due to two factors:
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~ Secondary vertices can be in close proximity to the pri-
mary vertex, and to each other, within the measurement
resolution of the track trajectories.

Existing flavor tagging algorithms use a combination of
low-level variables (the charged particle tracks, reconstructed
secondary vertices). and high-level features engineered by
experts as input to neural networks of various architectures
in order to perform jet flavor classification [1].

Vertex reconstruction can be separated to tw
tex finding, and vertex fitting [2]. Vertex finding refers to
the task of partitioning the set of tracks, and vertex fitting

Code and Dataset:

~ The charged particle multiplicity in each individual ver-
tex is low, typically between 1 and 5 tracks.
Vertex reconstruction is in essence an inverse problem of a
complicated noisy (forward) function:
Particle Decay —» Particle Measurement in Detector (1)
Neural networks can find a model for this inverse prob-
lem without expert intervention by using supervised learn-

https://github.com/hadarser/SetToGraphPaper/

https://zenodo.org/record/4044628

DOl 10.5281/zenodo.4044628
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The Dataset

https://zenodo.org/record/4044628

DOl 10.5281/zenodo.4044628

Input

: q
primary [ [ <d0, Zo» Po» 0, _>
vertex ! [ N P/ .-

- _ Perigee point e
secondary[
vertex <

[ ———
()

jet 4 track )

X
" (features features

L | ."_‘\‘

/ ’\ - - 8 ‘

\ &I B /i DELPHES
S Y fast simulation

&% http://home.thep.lu.se/Pythia/  https:/github.com/delphes/delphes
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Evaluating the
performance

True positives + true negatives

At the jet level: Rand Index =

n-mn-—1)/2
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Evaluating the
performance

[ ]AVR

[ Track Pair
I I Set2Graph
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The baseline:

https://ieeexplore.ieee.org/document/5734880

ON NUCLEAR SCIENCE

RAVE - a detector-independent toolkit to
reconstruct vertices

Wolfgang Waltenberger, Institute for High Energy Physics, Austrian Academy of Sciences, Vienna, Austria,

Abstract—A  detector-independent toolkit for vertex recon-
struction (RAVE = "Reconstruction (of vertices) in Abstract,

approach.

Index Terms—Event Reconstruction, Kalman Filter, Gaussian
Sum Filter, Adaptive Method, Kinematic Fitting, Flavor Tagging.

Mean ARI
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Summary

* Neural networks are useful for secondary vertex finding

« Set2Graph model is universal

« S2G model outperforms traditional approach in a variety of performance metrics

What next?

* How well does it work in real data from the LHC?

 How does better reconstruction impact downstream tasks?
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Thank you for your attention!
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