DARK PHOTON SEARCH WITH OPTICAL HALOSCOPES

Dr. Laura Manenti **NYUAD and WIS Collaboration** December 22nd, 2020

جامعة نيويورك أبوظي **WABU DHABI**

CENTER FOR ASTRO, PARTICLE, AND PLANETARY PHYSICS

Dark Photons

Dark Photons

How?

- Among the **most favourable candidates** for DM are WIMPs.
- But what about new "species" of light dark matter < GeV?
- Many of the existing experiments that look for light DM are not sensitive to DM masses far above the microwave range.
- We extend the search to higher masses, from 0.1 to 10 eV.
- In particular, we look for dark photons around 1.5 eV.

Dark Photon conversion

photons.

Dark Photons are converted to SM (detectable)

A periodic index of refraction corrects the momentum mismatch between the DP and the SM photon, such that the electric field does not integrate to zero.

Multilayer dielectric haloscope

Multilayer optical haloscopes

Mirror

- Dielectric bilayers, with high contract indices of refraction n₁ and n₂ (e.g. SiO2 and Si3N4, with indices of 1.46 and 2.05 respectively)
- Lens
- Photon detector (QE peaked at the DP mass)

Boost spectrum

Boost factor (beta) spectrum

Statistical analysis

Upper limits

Option A: Poisson background with no uncertainty Option B: Poisson background with uncertainty

Statistical analysis

Discovery limits

Option A: Poisson background with no uncertainty Option B: Poisson background with uncertainty

 \bigcirc

The stack

The stack

- The stack (actually 5 of them) was produced at the PoliFAB, the micro and nano technology center of the Politecnico di Milano.
- Technique used: plasma-enhanced chemical vapor deposition
- 46 layers (23 SiO₂ and 23 Si₃N₄)

TEM analysis

TEM analysis

8

TEM analysis

0

EDAX analysis

EDAX analysis

0

EDAX analysis

EDAX analysis

0

The photosensor

SPAD

The photosensor

SPAD cryo test

Transition Edge Sensor

0

Next steps

Next steps

- Run the full experiment using the SPAD
- Construction and characterisation of the TES
- Final experiment using the TES

