
Rivet monthly dev meeting
2 December 2020

Headlines
● Rivet 3.1.3 + YODA 1.8.5 released

○ YODA 1.8.4 earlier in Nov
○ Lots of fixes, and UI improvements for multiweights
○ Most Dockers built and deployed; rivet-herwig held up by Herwig bootstrap error
○ Argh: build stability issues, due to analysis concat behavioural variations 3.1.4??

● Re-activating enthusiasm / WG activities
○ HD consistency, plotting, statistics
○ 16-17 Dec: Christmas hackathon in Scotland
○ Outreach to ALICE and UK HEP (CB, JMB, AB) in Nov)
○ Christian B organised a useful discussion with EIC re. collaboration areas

● Standardising: weight names and event-record content
○ Proposal drafted by Chris G and AB
○ Plan to circulate to MCnet management & LHC expts
○ Follow-up meeting… in Jan?

https://gitlab.com/hepcedar/rivet/-/issues/171
https://docs.google.com/document/d/1SaWemWb5LHUV7rFXZv8qoGszA5SLHaPKc_4F73FIiHY/edit
https://docs.google.com/document/d/1fTMiCYnizZThc62gZHuKinBi4ANPpYHLxQAxnO_MFII/edit#

BACKUP

Release plan
● Rivet 3.1.3

○ Fixes and improvements: new analyses, util functions, Doxy cleaning, … review
■ weight-subset improvements & bugfix, nominal-weight specification
■ logic fixes & C++ improvements in “higher order” select/discard + sortBy
■ take DressedLepton origin vertex position from bare lepton
■ MC-only kT splittings broken in Rivet3 but fixed on release branch
■ mkhtml JS filtering!
■ CB/JMB/LL: DISKinematics issue??
■ AB: add jet filtering feature; avoid MET=0 peak in low-METtrue smearing
■ CG: rivet-merge broken? Add _SQRTS to output? yodamerge scaling/speed

● Longer-term, toward 3.2.0
■ finish Aditya & Nick performance and YODA API work, add HDF5 ana-data
■ beam-check consistency and enum rationalising
■ FastJets(FinalState) -> FastJets(ParticleBaseFinder)

● Let’s avoid a pre-Xmas release rush, for once! Eeek

https://gitlab.com/hepcedar/rivet/-/issues

Major work plans
● Convert finalize output to “dead” objects

○ Final objects really will mean “what was plotted/listed in the paper”
○ Allow eager conversion to solve “no-bin-width issue”
○ Best that we wait for binned measurement YODA2 types: no more scatters!

● HDF5 analysis data machinery (Holger) Status?
○ Also interested in HepMC and YODA HDF5 formats
○ Holger to ping CMS, prototype interface

● Plotting (Christian B et al)
○ Plan: generate Python MPL scripts without TeX, .plot styles → YAML
○ Rivet labels tested: MathText fails due to missing std symbols. Can we extend?
○ Stalled for a while… restarting? Possible student help from David Grellscheid
○ Christian to prototype the Python-script generation
○ Chris to extract weight-handling logic from rivet-cmphistos

Performance in Rivet and YODA (Aditya Kumar, AB)

● Profiling revealed bottlenecks: thanks Aditya!
○ HepMC ASCII I/O (obviously) — taken out of tests by event-reuse
○ GenEvent copying — for sanitising, but hardly used: removed from Rivet.

Could/should generators write smaller “essential” events by default?
Awkwardness: we still normalise GenEvent units… so not quite analysing a const GenEvent.
But can’t justify an expensive copy for unit conversion…

○ PID functions — sped up charge lookups by special-cases. Marginal gain
○ Multiweight calls to histo fill() very expensive: ~40-50% CPU!

100+ consecutive fills with same x: tried caching in YODA but no benefit:
cache-check costs the same as linear bin lookup! Maybe cache in Rivet?

● Thread-safety. “Just store a ProjectionHandler in AnalysisHandler: easy!”...?
○ But then who do Projection constructors (recursively) register their contained

projections with, before they themselves have been bound to a PH?
○ “Declare queue” implemented: not yet working (thx, unique_ptr), but should do

What should the Projection ownership be?!

YODA generalised datatypes (Nick Rozinsky, LC, AB)

● Long-understood limitations of YODA types and design
○ Overreach in attempted non-factorisable binnings: composed 1D axes are fine
○ Complexity/mess in 2D overflows: need “infinity binning”
○ Need for binned “dead” data objects… or any type, actually
○ Want programmatic access to axis number and global/local bin indexing
○ Want labelled/discrete binnings as well as continuous
○ Code duplication, particularly in Cython interface building

● Major YODA redesign using modern C++ magic. Thanks Nick!
○ E.g. Histo1D → wrapper of a BinnedStorage<CAxis, Dbn<1>> + sugar
○ + arbitrary mixtures, e.g. 3D binnings of doubles, discretely labelled counters, …
○ Adaptors used to map fill/set behaviours. Can do the same for I/O read/write?

● Path to a YODA2 release:
○ Needs I/O adaptors and user-facing refinements. Tie in with HDF5 format?

