

THE CURIOUS CRYOGENIC FISH (CCF)

DEVELOPMENT OF A DIAGNOSTIC ROBOT FOR LARGE CRYOSTATS

SPEAKER Alfonso MADERA³

C. BAULT¹, F. BECCHI², L. IANNELLI³, G. LEHMANN MIOTTO¹, F. PIETROPAOLO¹, X. PONS¹, S.H. PORDES⁴, F. RESNATI¹

¹ CERN (Geneva, CH); ² Daniele Telerobot Labs (IT); ³ University of Sannio (Benevento, IT); ⁴ Fermilab (Batavia IL, US)

27 May 2021

Outline

- Project Overview
 - Aim & Potential Applications
 - Technical Requirements
- State-of-the-art
 - Underwater Robotics
 - Space Robotics
 - Breakthrough character of the project
- Feasibility Studies
 - Visual Data Recording
 - Wireless Communication
 - Energy Storage
 - Propulsion

Project Overview

A robot for operation inside large cryostats, while filled and throughout their volume:

FUNCTIONALITIES

- Visual Inspections;
- Environmental Measurements;
- Repair Tasks;
- [in particle detectors] Support for Detector Calibration.

POTENTIAL APPLICATIONS

- Particle Physics Experiments (e.g., DUNE);
- Liquified Gas Transport;
- Cryogenic Plant Monitoring.

Technical Requirements

ENVIRONMENTAL

- Resistance to Thermal Stress & Pressure:
- - Tetherless Operation.

PERFORMANCE

- Operational Life: several months (in DUNE-like experiments);
- Rate of Operation: 2-3 few-day missions per year (in DUNE-like experiments);
- Level of Automation: Semi-Autonomous.

CONSTRAINTS

- No Damage/Interference to the working environment
 - \longrightarrow No contamination of cryogen, Autonomous "parking", etc.;
- [in particle detectors] No Maintenance when the detector is running.

State-of-the-art – **Underwater Robotics**

WHY The CCF is a *tetherless semi-autonomous underwater vehicle*

- Prominent and expanding role in commercial, scientific and military applications;
- Powerful operation in harsh environments;
- Propulsion: Thrusters + Control Surfaces;
- Use in liquids other than water is quite a novelty;
- Autonomous Manipulation still a challenge.

ROVs (Remotely-Operated Vehicles)

Tethered to operator and power source

Courtesy of Ocean Exploration Trust, Inc. (OET)

AUVs (Autonomous Underwater Vehicles)

Untethered, Self-Powered, often Fully Autonomous

Courtesy of MDM Team, University of Florence (IT)

State-of-the-art – Space Robotics

WHY The *highest reliability in extreme environments* is required

- Fundamental for both planetary and orbital missions;
- *Control*: Teleoperation;
- Much is still to be done: Diversified Locomotion & Increased Autonomy.

POTENTIAL CONTRIBUTIONS

Power and Thermal System

RTG (Radioisotope Thermoelectric Generator): decades of operation with no maintenance.

• Actuators: Reliability in operation and control.

Courtesy of ESA

Breakthrough Character of the Project

- **First device** for thoroughly inspecting large cryostats while filled
 - No Periodic Shutdown for maintenance;
 - No severe Contamination or Mechanical Failures;
 - No Distributed Sensors and Cameras.
- Integration of technologies in a single cryo-capable device;
- Enhancement of technologies to work in a cryo environment;
- Innovative Propulsion: Jet Propulsion based on Cryogen Heating
 - Exploitation of the environment:

 - Less efficient than Thrusters.
- Cryogen close to boiling point \longrightarrow Rapid expansion with little heating;

The Curious Cryogenic Fish (CCF): Development of a diagnostic robot for large cryostats **TIPP 2021**

Visual Data Recording

At cryo temperatures:

- Many COTS electronic parts still functional;
- Some imagers have guaranteed cold-capability;
- No Cameras able to operate: Performance Degradation or Failure.

Solution A: Development of custom electronics

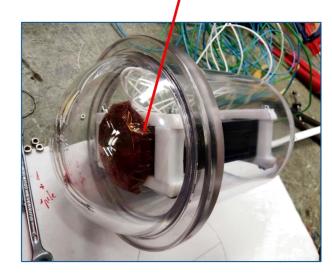
- Long R&D required

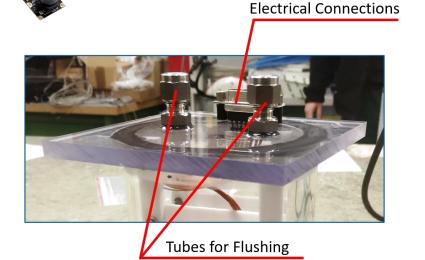
Solution B: Integration of COTS parts

- Parts Selection + System Validation

Solution C: Commercial cameras within heated cases TESTED

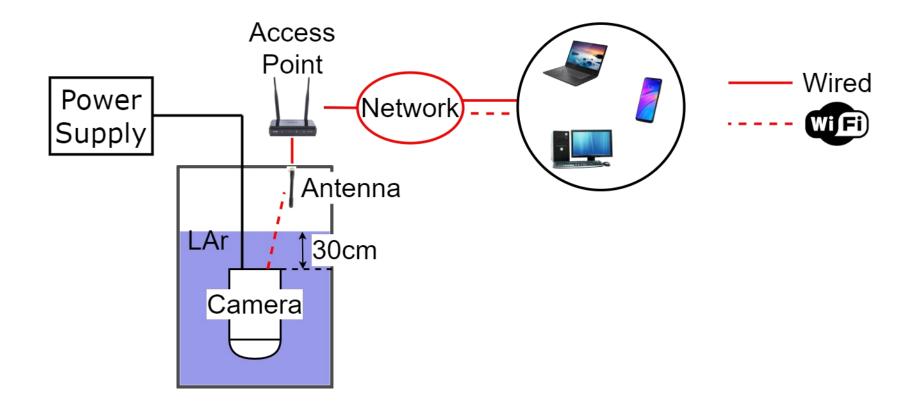
- **Successful reactivation** after long exposure to LAr (87K), by heating back to operating temperatures (above -40°C);
- Additional energy for heating.


REJECTED


REJECTED

Wireless Communication, I

- AIM Transmission of data produced onboard + Control of the robot;
- Successful Wi-Fi Data Transmission in LAr experimentally demonstrated.
 - Wi-Fi Netcam (*Raspberry Camera v2*) in a transparent, protective case;
 - Heating Pads on the camera;
 - Case continuously flushed with nitrogen.

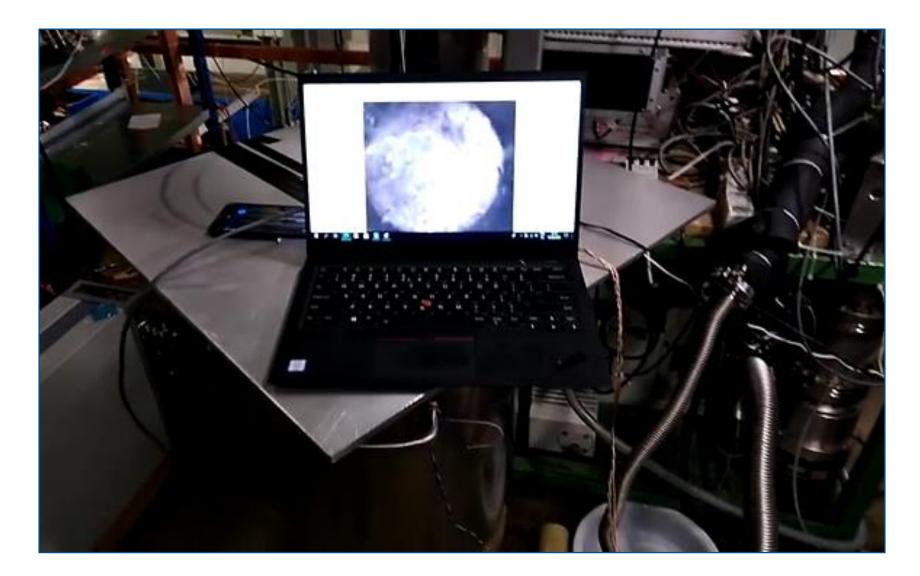

Raspberry Pi Camera

Wireless Communication, I

- AIM Transmission of data produced onboard + Control of the robot;
- Successful Wi-Fi Data Transmission in LAr experimentally demonstrated.

Wireless Communication, II

- Network connection established Video stream transmitted;
- Any device on the network could access the video stream and drive the camera;
- Camera temperature always kept in its nominal range (-40° to 85°C).


RESULTS (compared to RT operation)

Connection established with no significant delay;

During the entire test run (more than 30min):

- Connection active with no major degradation;
- Responsiveness to remote commands not significantly delayed;
- Video stream simultaneously accessible to all connected devices;
- Video quality not appreciably degraded, regardless of the number of connected devices.

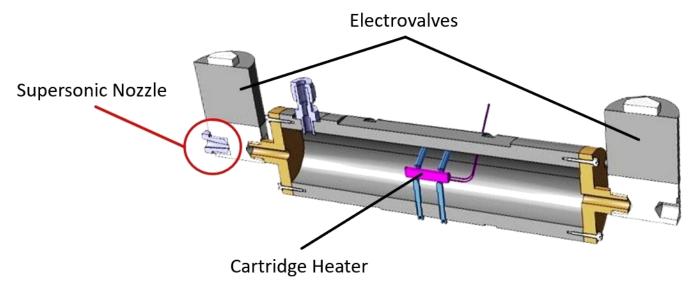
Wireless Communication, II

Energy Storage, I

- Low-Temperature operation of any battery is a serious issue;
- Solution: to identify batteries surviving storage at cryo temperatures,
 + to heat back to operating temperatures before use;

CCF in "hibernation mode" until reactivated; Battery heated with an external power link.

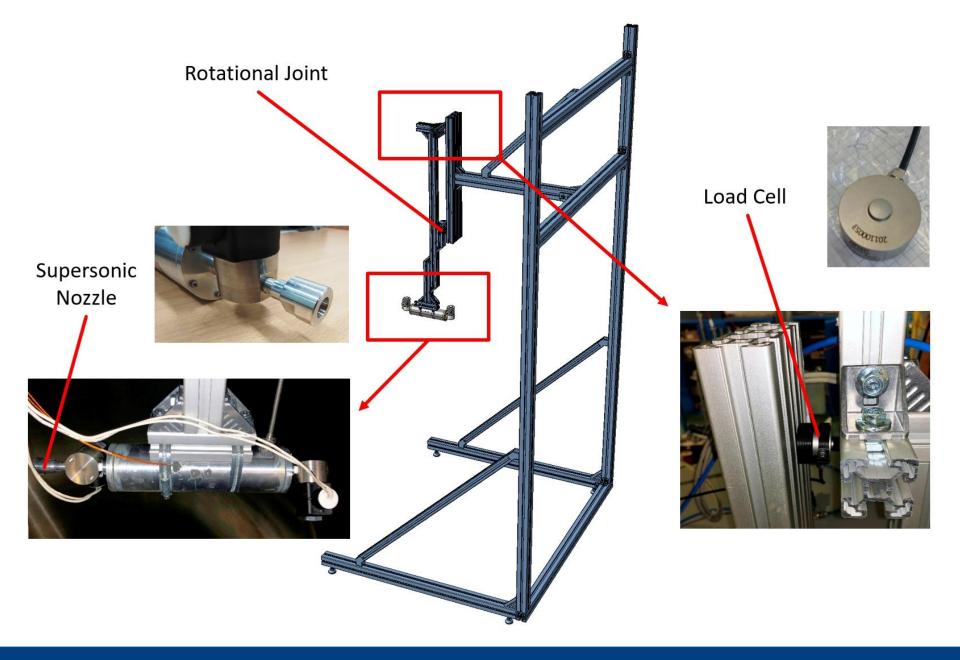
- Use of Li-ion batteries experimentally explored:
- Battery (*standard* 14.8V 5.2Ah) immersed in LAr (87K);
- Double protective case;
- Heating Pads on the battery;
- Innermost case continuously flushed with nitrogen;
- Possibility of Vacuum between the two cases.



Energy Storage, II

RESULTS

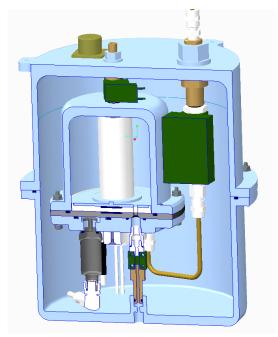
- Battery proved to:
 - Survive in storage mode at low temperatures;
 - Be operational again when heated to operating temperatures (above -30°C);
- Long-Term Durability: Promising results, but more studies are needed;
- Insulation: Vacuum sufficient to keep temperature in the nominal range;
 - Heaters for redundancy;
- Enhanced performance with specialised batteries.

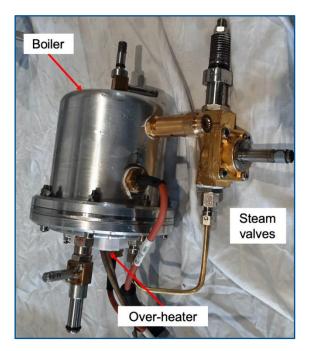

Propulsion – Prototype A

- 1. Compartment filled with cryogen;
- 2. Compartment closed + Cryogen heated;
- 3. One value open \longrightarrow Thrust generated

by high-pressure fluid emerging through the nozzle.

- Simulations to determine optimal nozzle size and shape;
- Tested directly in LAr.




Propulsion – Prototype A

Propulsion – Prototype B

Centralized steam generator supplying a network of supersonic nozzles

- 1. Boiler (for liquid evaporation);
- 2. Over-Heater (for increasing steam temperature and pressure);
- 3. Pressurized steam selectively distributed over the nozzles for propulsion.
- Heat from the boiler also used to regulate robot temperature;
- Tested in R245fa (LAr simulant).

Thanks for your attention!

This project has received funding from the ATTRACT project funded by the EC under Grant Agreement 777222.

The Curious Cryogenic Fish (CCF): Development of a diagnostic robot for large cryostats *TIPP 2021*