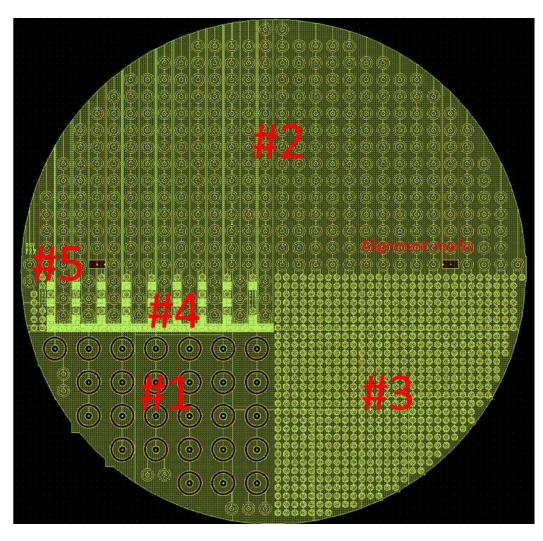


Radiation damage investigation of epitaxial p-type silicon using Schottky and pn-junction diodes

E. GIULIO VILLANI, PHILIP PATRICK ALLPORT, LAURA GONELLA, <u>CHRISTOPH KLEIN</u>, THOMAS KOFFAS, IOANNIS KOPSALIS, IGOR MANDIC, ROBERT VANDUSEN, GARRY TARR, FERGUS WILSON, HONGBO ZHU

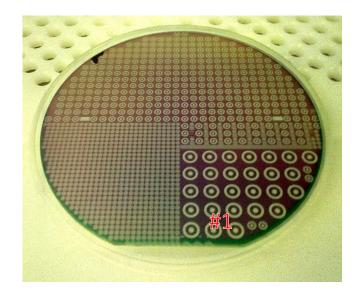
TIPP 2021, 24-28 May 2021

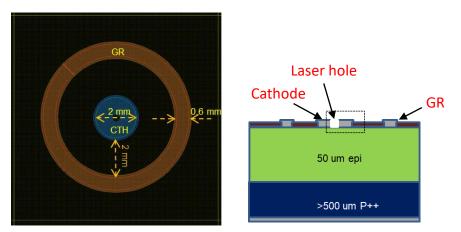

- What:
 - fabricate Schottky and n⁺p diodes on p-type epitaxial (50μm thick) silicon wafers
 - doping concentrations as they are normally found in CMOS MAPS devices
- <u>Why:</u>
 - investigate and gain a deeper understanding of radiation bulk damage in CMOS sensors.
 - develop reliable damage models that can be implemented in TCAD device simulators (Synopsys or Silvaco)
- <u>How:</u>
 - purchase of 6-inch wafers at five B-doped epitaxial levels (10¹³, 10¹⁴, 10¹⁵, 10¹⁶ and 10¹⁷ cm⁻³)
 25x each, total **125 wafers**
 - fabrication process has started both at ITAC (RAL) and Carleton University Microfabrication Facility (CUMFF).
 - tests will be carried out at RAL, Birmingham, JSI, CUMFF, IHEP

Design and layout of devices

5 type of devices proposed:

- #1: 2 mm Ø cathode with 0.4 mm Ø central hole, 10 x 10 mm² area
- #2: 1 mm Ø cathode, 0.2 mm Ø central hole, 5 x 5 mm²
- #3: 0.5 mm Ø cathode, no central hole, 2.5 x 2.5 mm²
- #4: 0.1 mm Ø cathode, no central hole, 0.5 x 0.5 mm²
- 'cell' with the previous 3 flavors (2,3,4) grouped together, to exploit wafer uniformity on small area
- **#5**: 6 TLM points for contact and epi resistance
- 2 masks only (metal and oxide)
- detailed description during the <u>35th RD50 workshop</u>





Design and layout of devices

5 type of devices proposed:

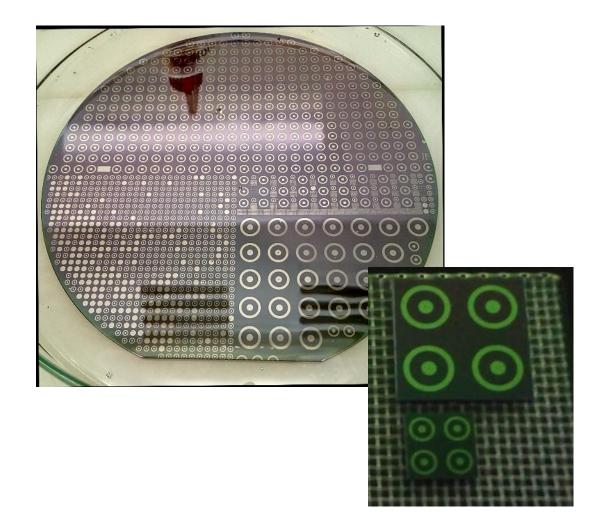
- #1: 2 mm Ø cathode with 0.4 mm Ø central hole, 10 x 10 mm² area
- #2: 1 mm Ø cathode, 0.2 mm Ø central hole, 5 x 5 mm²
- #3: 0.5 mm Ø cathode, no central hole, 2.5 x 2.5 mm²
- #4: 0.1 mm Ø cathode, no central hole, 0.5 x 0.5 mm²
- 'cell' with the previous 3 flavors (2,3,4) grouped together, to exploit wafer uniformity on small area
- **#5**: 6 TLM points for contact and epi resistance
- 2 masks only (metal and oxide)
- detailed description during the <u>35th RD50 workshop</u>

Fabrication details & comparison

RAL-ITAC

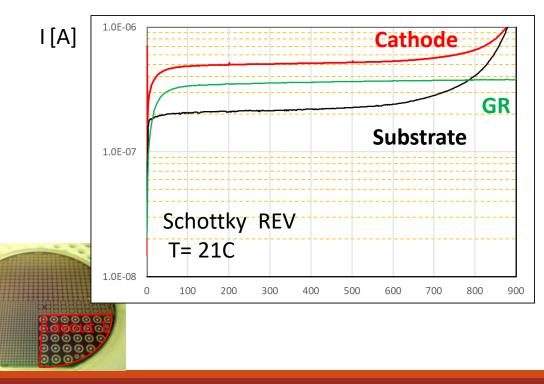
- Schottky process optimised on test wafers
- oxide deposition @150°C
- Al sputtering immediately after etching (no thin SiO2 layer)
- Al lift off in Acetone ultrasonic tank

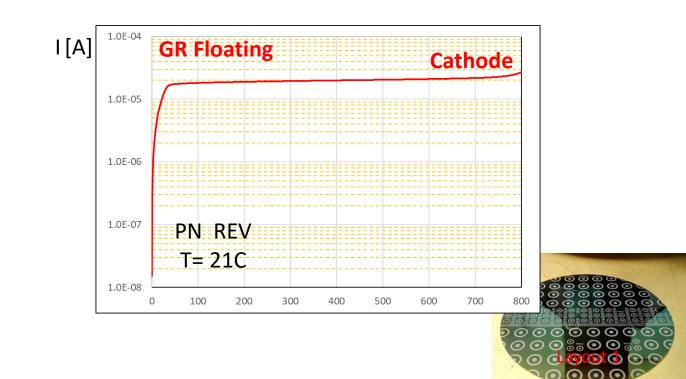
CUMFF


- pn-junction process optimised on test wafers
- 6" substrate wafers laser cut into 4"
- high temperature thermal oxidation
- Al front metal thermal deposition, back Al via e-beam evaporation
- front metal patterning + etching

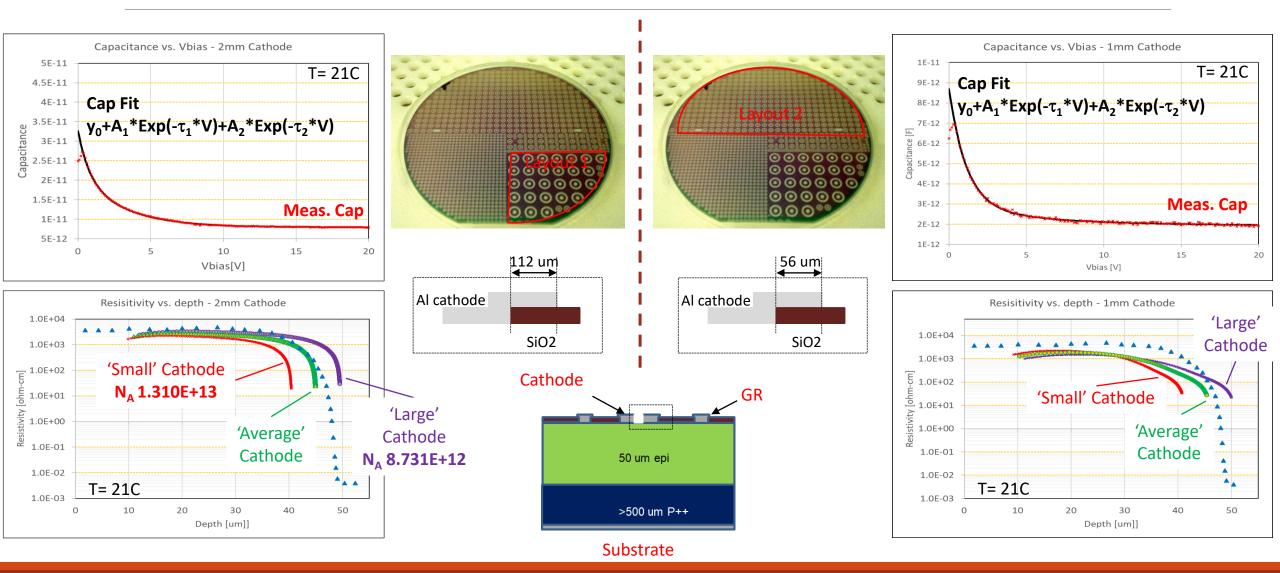
full details of fabrication processes in <u>E.G. Villani's</u> <u>talk from the 36th RD50 Workshop</u>

Project status


- 2x 4-inch wafers with pn-junctions fabricated at CUMFF
- 1 full Schottky wafer fabricated at RAL (+9 process started), multiple runs with wafer pieces at CUMFF
- IV & CV measurements on multiple diode flavours per wafer
- results cross-checked between institutes
- laser dicing at Scitech (RAL) for small samples used in DLTS and irradiation
- DLTS on Schottky and pn-junctions performed in Bucharest and at Semetrol (USA)


SCHOTTKY DIODES

- backplane + GR at GND
- all layouts tested


PN JUNCTIONS

• leakage current much higher than for Schottky by two orders of magnitude

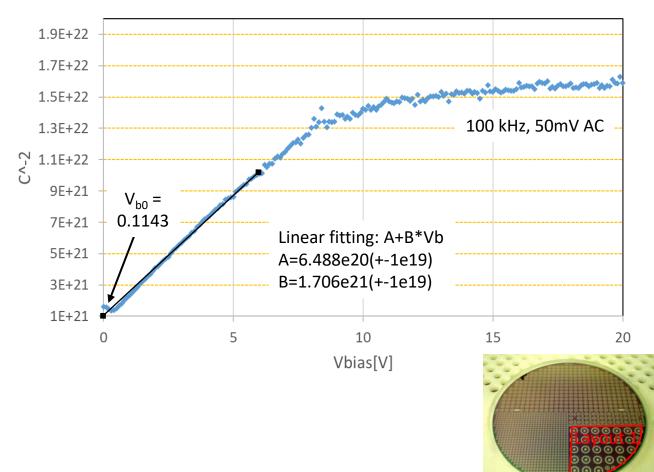
CV measurements

2021-May-27

CHRISTOPH KLEIN - TIPP 2021

Schottky barrier height

 Schottky barrier derived from CV measurement


$$\varphi_{b} = V_{d} + \frac{K \cdot T}{e} \cdot \left(ln \left(\frac{N_{V}}{N_{A}} \right) + 1 \right) - \Delta \varphi$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
From 1/C² From C-V Barrier low

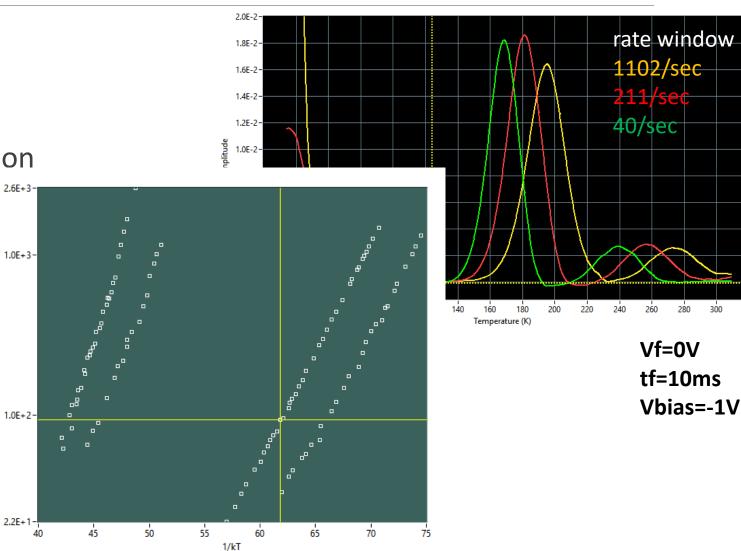
Barrier lowering (neglected here)

• from $1/C^2$ intercept: $V_d=0.1143$ V and using $N_v=1.83e19$

 $\varphi_{bpmin} = .4985 \ eV$ $\varphi_{bpmax} = .5088 \ eV$ depending on the cathode size chosen and therefore the doping N_A

1/Capacitance² vs. Vbias - 2mm Cathode

DLTS measurements: pn-junction diode @Semetrol

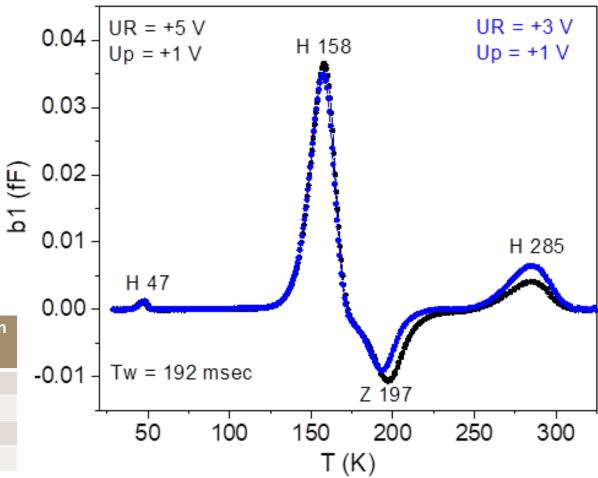

T2/e

DLTS spectrum:

- 2 maxima
- analysis with Gaussian deconvolution \Rightarrow peaks contain 2 traps each 2.66+3-

trap params from Arrhenius plot:

Midpoint temp (K)	E _t (eV)	Sigma (cm ²)	N _t /N _s
170.6	0.293	7.6E-16	9.7E-3
182.8	0.310	7.0E-16	2.1E-2
241.8	0.430	1.0E-15	7.6E-4
258.5	0.536	3.2E-14	3.5E-3

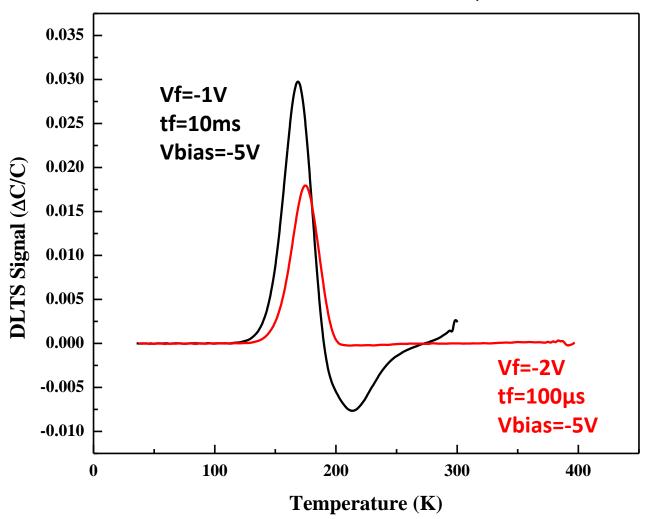

DLTS measurements: Schottky diode @Bucharest

DLTS spectrum:

- 3 maxima from hole traps
- 1 minimum, most likely from surface/interface states

trap parameters (Vbias=+5V; Vf=+1V):

Defect	Temp (K)	Ea (eV)	Sigma (cm2)	Defect concentration (cm-3)
H47	47	0.069	6.87E-17	2.49E10
H158	158	0.294	4.35E-16	9.32E11
Z197	197	0.439	1.85E-14	2.90E11
H285	285	0.611	3.76E-15	1.32E11

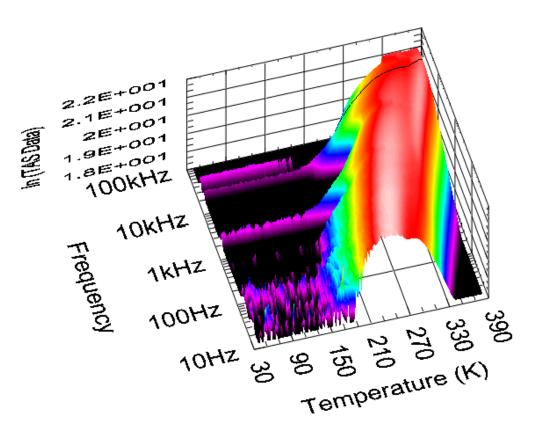


DLTS spectrum:

- peak with 2 majority carrier traps
- 'minority' carrier trap
 ⇒ vanishes for reduced + shorter
 filling pulse
 ⇒ surface/interface states likely
- large majority carrier trap for larger filling pulses at room temperature

Midpoint temp (K)	E _t (eV)	Sigma (cm ²)	N _t /N _s
170	0.312	5.5E-15	7.8E-3
180	0.294	3.3E-16	2.2E-2

Si Sch 500um DLTS Cp 50kHz -100-500 10ms.RW 119
 Si Sch 500um DLTS Cp 50kHz -200-500 100us.RW 119

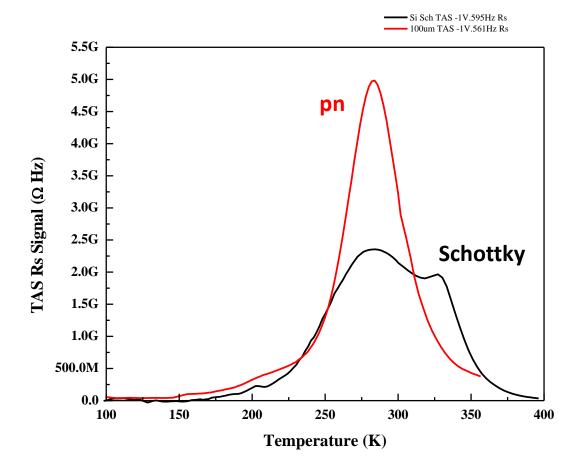


Thermal Admittance Spectroscopy (TAS)

 samples characterized with other spectroscopic techniques @Semetrol (DDLTS, IDLTS, IVT, PICTS, TAS)

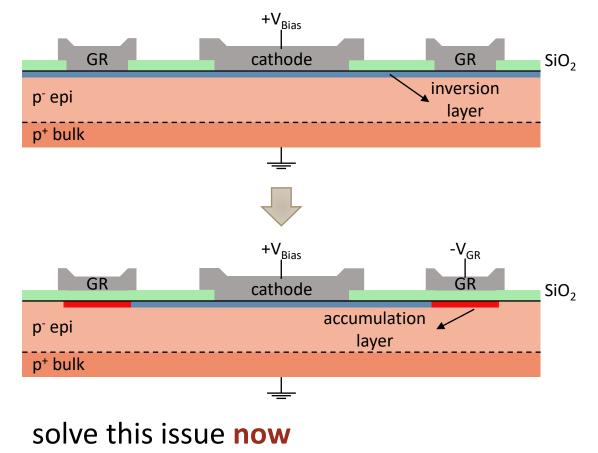
<u>TAS:</u>

- measure capacitance C and conductance G as function of frequency and temperature
- defect contribution to C/G depending on test signal frequency and temperature
- steps in C or peak in G for thresholds
- steady-state measurement
- applicable for low-doped or high-resistivity materials, complements DLTS



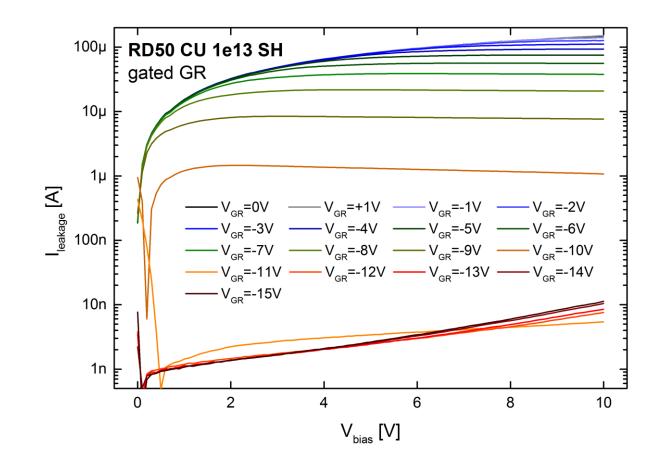
TAS analysis:

- higher trap energy in Schottky for similar peak
- second Schottky trap near mid-gap
- energy shift at different test voltages
 >field dependence of trap energy
 - >might explain difference between Schottky and pn-junction (higher E-fields in pn diode)


Sample	V _{bias}	E _t (eV)	σ (cm²)
PN	-1V	0.384	1.1E-16
Schottky	-1V	0.498	1.6E-14
Schottky	-2V	0.467	3.0E-15
Schottky	-1V	0.664	3.5E-13
Schottky	-2V	0.614	3.7E-14

Reducing leakage current: MOS gate guard ring structure

- some diode runs on 1e13 cm⁻³ wafer had high leakage currents
- tests showed that cause was formation of electron inversion layer
- expected typical behaviour after radiation damage in oxide
 - outlook to actual behaviour after irradiation
- mitigate by modifying the masks to isolate GR on oxide
- apply low negative V to gated GR
 - accumulation layer formation in interface
 - limit inversion layer



⇒ improve performance of irradiated devices later

Reducing leakage current: MOS gate guard ring structure

- gated GR yielded expected results
- high leakage fully mitigated for $V_{GR} <-10V$
 - depending on oxide thickness
- devices even showed 'memory effect'
 - stable-ish charge traps in interface
 - further improvements during repeated scans
- Iooking forward to device irradiation

Summary & outlook

- testing has proceeded successfully after shutdown periods last year
- general electrical characterisation from IV/CV measurements, very detailed trap characterisation from DLTS and TAS
- fabrication efforts at RAL and CUMFF has ramped up
 - adaptability and flexibility of processing

Outlook:

- > TCAD simulations of devices
- > proton irradiations at Birmingham (in 2021), neutron irradiations at Ljubljana
- > charge collection measurements