Radiation field characterization and particle tracking with Timepix3 in ATLAS and MoEDAL

B. Bergmann¹, T. Billoud¹, P. Burian¹,², D. Garvey¹, C. Leroy³, P. Manek¹, L. Meduna¹, S. Pospisil¹, P. Smolyanskiy¹, M. Suk¹, E. White¹

¹) Institute of Experimental and Applied Physics, Czech Technical University in Prague
²) Faculty of Electrical Engineering, University of West Bohemia
³) Groupe de Physique des Particules, Université de Montréal

Email: benedikt.bergmann@utef.cvut.cz
- Data-driven readout scheme with up to 40 MPix/cm²/s (per pixel dead-time: 475 ns)
- Simultaneous measurement of energy (ToT) and time of arrival (ToA) in each pixel
- Energy resolution: ~1.4 keV (sigma) @ 60 keV (in silicon)
- **Time binning: 1.56 ns**
- Minimal detectable energy: ~ 2.5 keV
Solid-state Time-Projection Chamber: 3D reconstruction of particle tracks

Charge carrier drift motion:
e\(^-\) and h\(^+\) drift described by

\[v_e = -\mu_e \times E(z) \]
\[v_h = \mu_h \times E(z) \]

\(\mu_{e/h}\): Mobility of e\(^-\)/h\(^+\)

Electric field parametrization:

Si:

\[\vec{E}(z) = \frac{U_B}{d} \vec{e}_z + \frac{2U_{dep}}{d^2} \left(\frac{d}{2} - z \right) \vec{e}_z ; \]

CdTe:

\[\vec{E}(z) = \frac{U_B}{d} \vec{e}_z \]

\(U_B\): Bias voltage; \(U_{dep}\): Depletion voltage; \(d\): Sensor thickness

→ Look-up table: \(z(t_{\text{meas.}}, E_{\text{meas.}})\)

Test measurement: 500 µm thick silicon sensor

120 GeV/c pion tracks accompanied by δ-rays:

z-resolution:
\(\sigma_z \sim 30 \, \mu m \)
\(\Delta z_{syst} \sim 25 \, \mu m \)

https://doi.org/10.1140/epjc/s10052-017-4993-4
Test measurement: 2 mm thick CdTe sensor

- e+/− like event
- pair production (!?)
- cosmic µ
- fragmentation

z-resolution: $\sigma_z \sim 60 \, \mu m$
→ Improved determination of track directions
→ Improved separation of different particle classes

Timepix3 in MoEDAL

Installation of 2 Timepix3 detectors in MoEDAL in September 2018.

MoEDAL = Monopole and Exotics Detector At LHCb

Timepix3 are placed at 1.1 m distance to IP8

Timepix3 have 500 µm thick silicon sensor layers. Data are available mainly for November/December 2018 Pb ion runs.
Timepix3 in MoEDAL: November 24 – 25, 2018
Cluster rate as a function of time

Integration time: 100 s
Integration time: 1 s

Bunch train injections?
Timepix3 in Moedal:
Radiation field characterization – during collisions

Basic categorization of tracks using the ratio of energy per track and the number of pixels

Region 1:
Lowly ionizing particles (γ, e^-, π^+, μ^+, ...)

Region 2:
Highly ionizing particles: $p +$ (E < 100 MeV), ions...
Timepix3 in Moedal: Directionality map

Primary peak:
Particles (p^+, μ, π, \ldots) from the IP

Secondary peak(s):
Particles (p^+, μ, π, \ldots) from collimators / beam pipe (?)
Timepix3 in MoEDAL: Directionality map

Particles from IP ($\Theta > 30$, ϕ in [90,180])

- $dE/dX_{MPV} \sim 1.18$ MeV cm$^{-2}$ g$^{-1}$
 - Particle with charge 1
- $dE/dX_{MPV} = 11$ MeV cm$^{-2}$ g$^{-1}$
 - Charge ~ 3
- $dE/dX_{MPV} \sim 42$ MeV cm$^{-2}$ g$^{-1}$
 - Charge ~ 6
Timepix 3 in MoEDAL: Directionality maps – During and after collision period(s)
Timepix3 in MoEDAL: Comparison of the directionality maps during pp- and PbPb-collision periods

Secondary peaks only seen during Pb-runs.

pp-collision period on September 24, 2018

Pb-run on November 25, 2018
Timepix3 in ATLAS: Positions and goals

2017: 2 Timepix3 (position TPX3-2) detectors were installed far away from the IP
- Time resolved study of radiation created in the collimators

2018: 2 Timepix3 detectors were installed on the extended barrel to study their capabilities
- Study the radiation fields during and after collision periods
- Measure the luminosity

LHC Run-3 upgrade: Installation of 13 Timepix3 two-layer stacks synchronized with LHC orbit clock
- Bunch-by-bunch absolute (?) luminosity measurement
Primary and secondary radiation created during pp-collisions (neutrons, γ-rays, electrons, charged particles)

Induced radioactivity (γ and e−)
Directionality map:

Primary and secondary radiation created during pp-collisions (neutrons, \(\gamma\)-rays, electrons, charged particles)

Induced radioactivity (\(\gamma\) and e\(^{-}\))
Timepix3 in ATLAS:

Equation to describe the growth and decay of induced radioactivity

\[
M_{\text{act}}^i = \sum_{k=1}^{n} M_{\text{act}}^{i-1,k} \times e^{-\lambda_k t} + (M_{\text{tot}}^i - M_{\text{act}}^{i-1}) \times \theta (M_{\text{tot}}^i - M_{\text{act}}^{i-1}) \times \sum_{k=1}^{n} Y_k \times (1 - e^{-\lambda_k t})
\]

Decay of atoms activated before i-th time bin

Activation during i-th time bin (valid only during collisions)

- \(M_{\text{tot}}\): total count rate measured in the given TPX frame (normalized to unit time)
- \(M_{\text{act}}\): count rate caused by all activation products
- \(\lambda\): decay constant, \(\lambda = \ln(2)/T_{1/2}\); \(T_{1/2}\) is the half-life
- \(t\): time period between the end of \((i-1)\)-th bin and the end of \(i\)-th bin
- \(Y_k\): normalization constant, used to fit the growth/decay curve to the measured data
Timepix3 in ATLAS: Measurement of the induced radioactivity in the ATLAS cavern

- Measured
- Total activation
- Components

Count rate (s⁻¹)

Day in 2018

17.05 18.05 19.05 20.05 21.05
Conclusion

- Timepix3 detectors were installed in ATLAS and MoEDAL and used to characterize the charged particle fields.
- Their particle tracking capability and the possibility to separate different particle species was used to study particle directions and trace them back to the interaction points.
- The creation and decay of radioisotopes was described by a model and applied to the data allowing the identification of few created radioisotopes.

Thank you very much for your attention!
Timepix3 in ATLAS: Identification of radioisotopes

Determined half-lifes are not sufficient to really indicate which isotope was present. What about the energy spectrum?

Compton edge at 338 keV ($E_\gamma \sim 511$ keV) with $T_{1/2} \sim 47305$ s → From β^+ decay of 64Cu*

Peak at 24 keV with $T_{1/2} \sim 16548$ s → From 115mIn **

*) 64Cu can be created by: 63Cu(n, γ)64Cu

**) 115mIn can be created by: 115In (n, n')115mIn
Using filtering on track properties events of interest can be filtered out of the data set.

Minimum Ionizing Particles (MIPs) were selected using linearity criterion.

Timepix3 in ATLAS: Measurement of MIP fluence and particle directions

Unfiltered data set: 10 s integration time

Selected straight tracks: 10 s integration time

Directionality map of MIPs:

Pb-run on November 25 (line with indicates intensity):
- The primary peak points back to IP8.

pp-collision period on September 24
(backprojection of the bin with the highest number of events).
Methodology verification and precision

Experiments:
- Pion test beams (120 GeV/c, 40 GeV/c) at the Super-Proton-Synchrotron at CERN
- Cosmic muons

"Raw data": Detector response in the form of 2D projections. 500 µm thick silicon
Test beam measurement (40 GeV/c pion beam):
2 mm thick CdTe sensor

Charge collection efficiency correction:
Energy correction: \(E_{\text{corr},i} = \frac{E_{\text{meas},i}}{\varepsilon_{\text{cc}}(z)} \)
\(\varepsilon_{\text{cc}}(z) \) was determined in the measurement

\[
\frac{dE}{dX} = 2.71 \text{ MeVcm}^2/\text{g}
\]

Achieved z-resolution \(\sim 60 \mu \text{m} \)

https://doi.org/10.1140/epjc/s10052-019-6673-z
Institute of Experimental and Applied Physics
Czech Technical University in Prague

Test beam measurement (40 GeV/c pion beam):
2 mm thick CdTe sensor – e⁻/⁺ like events

$E_{\text{dep}} = 5.66$ MeV

$E_{\text{dep}} = 1.56$ MeV

$E_{\text{dep}} = 3.96$ MeV

Pair-production (!?):

E_{dep}: Total energy deposition in the CdTe sensor layer.
Test beam measurement (40 GeV/c pion beam):

2 mm thick CdTe sensor – Fragmentation

\[E_{\text{dep}} = 37.06 \text{ MeV} \]
Impact and applications

- **Life-sciences:**
 - Single layer Compton camera (→ Search for γ radiation sources) [1]
 - Secondary particle tracking in hadron therapy

- **Space weather:**
 - Measurement and separation of e⁻/p⁺ (and their directions) in the Van-Allen Radiation belts [2]
 - Measurement of particles in Solar Particle Events

- **Applications in nuclear and particle physics**
 - Particle tracking and radiation field characterization (ATLAS, MoEDAL)
 - Vertex reconstruction and angular correlation measurements
 - Double beta decay experiments (?!?!) [3]
