

Technology and Instrumentation In Particle Physics TIPP - 2021

Comprehensive technology study of radiation hard LGADs

<u>Evangelos – Leonidas Gkougkousis</u>¹, Lucia Castillo Garcia² Sebastian Grinstein², Victor Coco¹

¹CERN

²Institut de Física d'Altes Energies

Overview

- · Introduction
- · Radiation effects
- Active Gain Layer Act J
- Effective Gain Act II
- Collected Charge Act JJ
- · Comparative studies
- · Conclusions

3 complementary methods of radiation hardness evaluation

Introduction – LGAD Technology

- ✓ Invented at CNM, initially considered for tracking by IFAE, proposed for timing by UCSC
- ✓ HPK, CNM, FBK, MiCRON, BNL (USA), NDL (China)

- ✓ Requires precise diffusion control for layer thickness:
 - Thin highly doped n-well layer $(\sim 1 1.5 \mu m)$
 - ✓ Gain layer ~ 2 μm
 - ✓ p-stop ~3 -3.5 μm
- Different gain layer species possible:
 - ✓ Boron (standard)
 - ✓ Gallium
 - ✓ Boron +Carbon

- → 4" Si-on-Si wafers (High Resistivity ~2 kΩ•cm)
- > 50 μm thickness on 250 μm support wafer
- Different implantation species
- ➤ Single diodes of active area 0.7 x 0.7 mm

Standard Boron
Boron + Carbon Spray
Gallium

Introduction – Use in HEP

ATLAS HGTD

See Irena's talk : link

Sensors

- 15 x 30 LGAD arrays of 1.3 x 1.3 mm²
 - ➤ 10% max estimated occupancy (120 mm radius)
 - Reduced (~ 20) μm inter-pad regions
 - ➤ Low sensor capacitance (~2pf)
- Operation temperature -30 °C (CO₂ cooling)
- $\sigma_t = 35 70$ psec per hit
- Radiation tolerance to 2.5•10¹⁵ n_{eq}/cm²

Geometry

- 2 disks per side, 2 sensor layers per disk
- $-2.4 < |\eta| < 4.0, 12 \text{ cm} < R < 64 \text{ cm}$

CMS MDT

Link to TDR: link

- ThiN LYSO Crystal + SiPM layer in the barrel (BTL), LGADs in the end caps (ETL)
- 30 psec MIP timing up to $|\eta| < 3.0$ (LGADs at $1.6 < |\eta| < 3.0$)
- Radiation requirements up to 2•10¹⁵ n_{eq}/cm² for LGADs

• 50 μm thick sensors on 300 μm SoI wafers, slim edge

design

■ Operation at -30 °C

Radiation Effects

Four main disruptive mechanisms for irradiated LGADs:

Substrate

- 1. Reduced primary charges induced in substrate (reduced lifetime)
- 2. Acceptor re-introduction rate

$$1/_{\tau} = \beta \times \Phi$$

The ROSE collaboration

$$N_{Act.} = G \times \Phi$$

Gain Layer

- 3. Reduced active implant in gain layer through acceptor removal
- 4. Reduced mobility within gain layer through trapping

Gain reduction larger than anticipated from acceptor removal (~factor of 3)

Acceptor removal, Defect Kinetics (simplified @)

Rad +
$$Si_s \rightarrow Si_i + B_s \rightarrow B_i + O \rightarrow B_iO_i$$

Rad + $Si_s \rightarrow Si_i + C_s \rightarrow C_i + O \rightarrow C_iO_i$

Gain layer
de-activation
too many
interstitials,
cannot modify

Charge trapping

Can be engineered by oxygen trapping

base)

Part I - The Active Gain Layer

Substrate

Reduced primary charges induced in substrate (reduced lifetime)

Acceptor re-introduction rate

$$^{1}/_{\tau} = \beta \times \Phi$$

 $N_{Act.} = G \times \Phi$

Gain Layer

Reduced active implant in gain layer through acceptor removal

Reduced mobility within gain layer through trapping

$$N_{G_{\Phi}} = N_{G_0} \mathrm{e}^{-c\Phi}$$

Gain reduction larger than anticipated from acceptor removal (~factor of 3)

•The Derive and Fit Method - I

Gkougkousis V., RD50 Workshop Talk, November 2019: link

- ✓ Probe active implant by depletion voltage
- ✓ Additional p-implantation gain layer creates secondary depletion region
- ✓ Mott–Schottky equation → leakage current variation at gain layer depletion
- ✓ Form of $|\partial I/\partial V|$ at depletion point corresponds to dopant transition function convoluted with instrument resolution (Gaussian X Gaussian)
- ✓ Depletion voltage determined Gaussian fit at depletion voltage for -10°C, -20°C & -30°C

Fluences up to 3·10¹⁵
 n_{eq}/cm² in p⁺ and n⁰

$$V_d = \frac{\sum_{T=-10}^{-30} {}^{o}_{C} V_{d,T_i}}{n_T}$$

$$\delta V_d = \sqrt{V_{d,sys} + V_{d,stat}}$$
 Average of fit Standard sigma deviation of V_d

•The Derive and Fit Method - II

- Linear dependence assumption between V_{GL} and active implant
- Normalized exponential reduction fit model on gain and V_{GL}

$$G(\%) = e^{-C_G \Phi}$$

- Linearity hypothesis tested with independent C_v and C_G fits full compatibility
- Constraints imposed on initial values to reflect charge measurements

Results

- Compatible acceptor removal coefficients between all implants
- Slight Ga advantage in p⁺ irradiation (23 GeV/c PS), higher mass reduces displacement probability in coulomb-only (far-field) interactions
- Quasi-identical performance for neutron irradiated (fast ~ 10MeV neutrons)
- Identical gain layer de-activation for all dopants with fluence

Acceptor Removal Coefficient			
Gallium	(8.25 ± 0.80) ×10 ⁻¹⁶		
Boron + Carbon	(9.33 ± 0.78) ×10 ⁻¹⁶		
Boron	(9.69 ± 1.04) ×10 ⁻¹⁶		

Part II - Effective Gain

Substrate

1. Reduced primary charges induced in substrate (reduced lifetime)

$$1/_{\tau} = \beta \times \Phi$$

2. Acceptor re-introduction rate

$$N_{Act.} = G \times \Phi$$

Gain Layer

3. Reduced active implant in gain layer through acceptor removal

$$N_{G_{\Phi}} = N_{G_0} \mathrm{e}^{-c\Phi}$$

4. Reduced mobility within gain layer through trapping

Gain reduction larger than anticipated from acceptor removal (~factor of 3)

•GR Vs Pad Method - I

Gkougkousis V., RD50 Workshop Talk, November 2019: link

Passivation

0.7 mm p-type implant

Buried oxide

- ✓ Acceptor removal only gives information about active dopant, not gain
- ✓ Gain also depends on **trapping levels & doping profiles**
- ✓ Effects after irradiation for different defect concentrations
- ✓ For same amount of acceptor removal, different gain reduction expected

- 1. GR and pad on same substrate, all non-gain related irradiation effects can be normalized
- 2. Assumption that differences between GR n-type implant and pad n-type implant have minimal effects

•GR Vs Pad Method - II

- \checkmark I_{GR}/I_{PAD} linear at the semi-log plane
- ✓ Gain Coefficient probed by slope of linear fit
- ✓ Different fits per temperature, reputed at -10 °C, -20 °C and -30 °C

•GR Vs Pad Method - III

Gain Reduction Coefficient		
Irrad. Type	C ± δC	
Gallium		
n^0	$(3.01 \pm 0.9) \times 10^{-14}$	
p⁺	$(2.02 \pm 0.11) \times 10^{-14}$	
Boron + Carbon		
n^0	$(2.57 \pm 1.1) \times 10^{-15}$	
p⁺	$(1.37 \pm 0.24) \times 10^{-14}$	
Standard Boron		
n^0	$(2.25 \pm 0.39) \times 10^{-14}$	
$p^{\scriptscriptstyle +}$	$(2.25 \pm 0.28) \times 10^{-14}$	
	_	

Acceptor level introduction rate

$$N_{eff}(\Phi) = N_{eff_0} - N_c (1 - e^{-c\Phi}) + g_c \Phi$$
 Effective dopant concentration Removable dopant constant Initial dopant concentration

Results

- Gallium and Boron perform similarly
- Carbon + Boron is up to 2 times better in proton and up to 7-8 times better in neutron irradiation
- Significant variation with implant type
- Gain reduction coefficients are up to 10 x the previously estimated acceptor removal

Part III - The Actual Gain

Substrate

1. Reduced primary charges induced in substrate (reduced lifetime)

$$1/_{\tau} = \beta \times \Phi$$

2. Acceptor re-introduction rate

$$N_{Act.} = G \times \Phi$$

Gain Layer

3. Reduced active implant in gain layer through acceptor removal

$$N_{G_{\Phi}} = N_{G_0} \mathrm{e}^{-c\Phi}$$

4. Reduced mobility within gain layer through trapping

Gain reduction larger than anticipated from acceptor removal (~factor of 3)

Collected Charge - I

- Before irradiation all implants yield exactly same gain charge
- With fluence increase:
 - Carbonated sensors require 20% less bias for same gain
 - Gallium implanted sensors require 20% more bias for same gain

- High frequency SiGe (~2GHz) amplifier
- Mean sensor + amplifier noise < 1.5 mV
- 5000 recorded events per point

Collected Charge - II

Time Resolution:
$$\sigma_{tot}^2 = \sigma_{timewalk}^2 + \sigma_{jitter}^2 + \sigma_{conversion}^2 + \sigma_{clock}^2$$

$$\sigma_{Dist.}^2 + \sigma_{Landau}^2 \left(\frac{t_{rise}}{S/N}\right)^2 \quad \left(\frac{TDC_{bin}}{\sqrt{12}}\right)^2 \quad Fixed S$$

$$\sigma_{Dist.}^2 + \sigma_{Landau}^2$$

CFD Level optimization

$$(\sigma_{\mathrm{Dut}})_{\mathit{CFD}_{ij}} = \sqrt{(\sigma_{\mathrm{Tot}}^2)_{\mathit{CFD}_{ij}} - (\sigma_{\mathrm{Ref}}^2)_{\mathit{CFD}_i}}$$

2D optimization plot – 0.5% binning

- Similar behavior in terms of signal shape on all implants
- Time resolution follow charge trend
- Charge vs ot identical for all gain layer variations

Gkougkousis V., RD50 Workshop Talk, June 2020: link

Comparative Studies I – Leakage Current

- \triangleright (I_C/I_B) presents a 33 % increase
- Established though fits on non-gain regions
- \triangleright Behaviour unchanged up to IeI5 n_{eq}/cm^2 in proton and neutron irradiated
- Consistent behavior with temperature (-30°C, -20°C, -10°C)
- Leakage current increase in Gallium implanted samples but effect traced back to process issues

Headroom = V_{max}- V_{bias at 100% efficiency}

- $ightharpoonup \sim 100 \%$ efficiency for Carbon + Boron for IeI5 n_{eq}/cm^2 at neutron irradiation
- $ightharpoonup \sim 100$ % efficiency at IeI5 n_{eq}/cm^2 for Boron only sensors at proton irradiation
- Proposition Boron only at $3e15 n_{eq}/cm^2$ neutron is close to a 100 %, but more validation points needed
- ➤ Boron only sensors provide larger headroom at 100 % efficiency that Boron + Carbon combination
- In best case scenario (boron at $3eI5 n_{eq}/cm^2$ neutrons) no safety factor available

Comparative Studies II - Stability

- ✓ Carbon presents the most unstable implementation with respect to dark rate
- ✓ Boron is the better solution across the board with higher stability points

Outlook – Lithium, Indium

- Indium doped gain layers
 - No acceptor removal improvement anticipated
 - Idea from thin solar cell community, (D.J. Paez et. al., <u>link</u>) and space applications
 - Demonstrated to have larger radiation resistance in electron radiation
 - Because of higher atomic mass, should be less mobile (in theory, practice will be different....)
- Lithium co-implantation ONLY on p-implant layers
 - Lithium is n-type but in low doses should not impact p layer
 - Proven to improve radiation hardness of solar cells after 1MeV neutron irradiation
 - Lowers annealing temperature when implanted in substrate
 - Defect engineering at low temperatures E. Oliviero et Al. (<u>link</u>)
 - Original Solar cell study Weinberg et Al. (<u>link</u>)

Gkougkousis V., 16th Trento Workshop (2021): <u>link</u>

Boron 50 nm screen oxide, 6e13 cm⁻² at 40 keV with 140 min diffusion time Indium 50nm screen oxide 5e14 cm⁻² at 340 keV with 210 min diffusion time

RD50 founded Project: RD50-2021-03

Conclusions

Three methods of radiation hardness:

1. Active Gain Implant: No measureable improvement wrt different implants

2. Effective Gain Estimation: Gallium-Boron behave similarly

Carbon up to 2x better in neutrons / protons

3. MIPs Charge collection: 20 % improvement in required bias for Carbon

20 % degradation for Gallium

Consistent with defect kinetics theory and an exponential field -gain dependence Results consistent in all temperatures (-10°C, -20°C, 30°C)

- No degradation in leakage current
- 15% degradation on available headroom in Carbon samples
- 15% degradation in stability of Carbon samples
- No effect on signal properties, efficiency, noise or timing
- In and Li co-implantation as next steps on defect engineering

BackUp

Overview

Introduction

- LGAD Technology
- HEP Applications ATLAS & CMS
- Radiation effects
- Primary Mechanisms
- Gain Layer Depletion
- Acceptor Removal

Gain

- The Derive & Fit method
- Gain layer de-activation
- Extraction
- The GR vs Pad method
- Removal Coefficients and substrate re-introduction rates

Collected Charge

- Charged Particle measurements
- Performance after neutron-proton irradiation
- Gain modelisation

Comparative studies

- 3-method evaluation
- Leakage current across all spices
- Efficiency studies in different spices
- Stability across different implants
- Conclusions
- Lithium Indium
- Conclusions and Outlook

3 complementary methods of radiation hardness evaluation

Introduction – LGAD Technology

- Invented at CNM, initially considered for tracking by IFAE, proposed for timing by UCSC
- ✓ Secondary p implant under collection electrode introducing moderate gain (10 -50)
- Up to 35 μm thickness on SoI or wafer to wafer bonding (typically 50 μm)
- HPK, CNM, FBK, MiCRON, BNL (USA), NDL (China)

- Requires precise diffusion control for layer thickness:
 - ✓ Thin highly doped n-well layer ($\sim 1 1.5 \mu m$)
 - ✓ Gain layer ~ 2 µm
 - ✓ p-stop ~3 -3.5 μm
- ✓ Different gain layer species possible:
 - ✓ Boron (standard)
 - ✓ Gallium
 - Boron +Carbon

- → 4" Si-on-Si wafers (High Resistivity ~2 kΩ•cm)
- > 50 μm thickness on 250 μm support wafer
- ➤ Different implantation species
- ➤ Single diodes of active area 0.7 x 0.7 mm

Standard Boron
Boron + Carbon Spray (not confined)
Gallium

Radiation Effects

Acceptor removal, Defect Kinetics (simplified ©)

- Incident particle hits silicon atom and created Vacancy (V) and Interstitial Silicon (Si_i)
- Si_i Propagates and can transform substitutional Boron/Carbon to B_i/C_i (interstitial),
- B_i/C_i can form several defects, but the most prominent in high resistivity silicon is:

or
$$\begin{array}{c} Si_i + B_s \rightarrow B_i + O \rightarrow B_iO_i \\ Si_i + C_s \rightarrow C_i + O \rightarrow C_iO_i \end{array}$$
 Change type of final defects but not amount of active implant

- Since B_i and C_i both compete for the same Si_i , if we introduce more Carbon we would expect to from less B_iO_i defects and more C_iO_i
- If we exchange Boron with a less mobile (heavier) atom (Ga), then we should also enhance C_iO_i defects instead of Ga_iO_i

Bias Voltage (V)

- ✓ Additional p-implantation gain layer creates secondary depletion region
- ✓ Mott–Schottky equation → leakage current variation at gain layer depletion
- ✓ Form of $|\partial I/\partial V|$ at depletion point corresponds to dopant transition function convoluted with instrument resolution (Gaussian X Gaussian)
- ✓ Depletion voltage determined Gaussian fit at depletion voltage for -10°C, -20°C & -30°C

$$\delta V_d = \sqrt{V_{d,sys} + V_{d,stat}}$$
 Average of fit Standard sigma deviation of V_d

- · Independent Gaussian fits for each temperature
- Uncertainties estimated from propagation of fit sigma
- Fluences up to $3\cdot10^{15}$ n_{eq}/cm^2 in p^+ and n^0

1,0E-06

W5S1005 1e14 n. δl/δV

•The Derive and Fit Method - II

- Linear dependence assumption between V_{GI} and active implant
- Normalized exponential reduction fit model on gain and V_{GL}

$$G(\%) = e^{-C_G \Phi}$$

- Linearity hypothesis tested with independent C_v and C_G fits full compatibility
- Constraints imposed on initial values to reflect charge measurements

Results

- Compatible acceptor removal coefficients between all implants
- Slight Ga advantage in p⁺ irradiation (23 GeV/c PS), higher mass reduces displacement probability in coulomb-only (far-field) interactions
- Quasi-identical performance for neutron irradiated (fast ~ 10MeV neutrons)
- Identical gain layer de-activation for all dopants with fluence

Acceptor Removal Coefficient			
Irrad. Type	С	δC	
Gallium			
Combined	8.25E-16	7.98E-17	
n ⁰ irradiated	8.28E-16	1.16E-16	
p ⁺ irradiated	1.41E-15	1.88E-16	
Boron + Carbon			
Combined	9.33E-16	7.78E-17	
n ⁰ irradiated	8.85E-16	8.76E-17	
p ⁺ irradiated	1.70E-15	2.23E-16	
Standard Boron			
Combined	9.69E-16	1.04E-16	
n ⁰ irradiated	8.19E-16	1.35E-16	
p⁺ irradiated	1.96E-15	1.60E-16	

•The Derive and Fit Method - II

•Charge at -20°C and -10°C

Noise

Comparative Studies II - Stability

$$\Delta T_{trig}^{i} = \frac{\sum_{j=1}^{n-1} (T_{j+1}^{trig} - T_{j}^{trig})}{n}$$

$$F_{trig}^{i} = \frac{1}{1 - i}$$

X 1000

Self-trigger Rate:

$$\widetilde{F_{trig}} = \frac{F_{trig} + F_{trig} + F_{trig}}{2}$$

Uncertainty on trigger rate:

$$\delta \widetilde{F_{trig}}(\%) = \sqrt{\frac{(N_{over} + 1) \times (N_{over} + 2)}{(N+2) \times (N+3)} - \frac{(N_{over} + 1)^2}{(N+2)^2}}$$

Efficiency is a binary magnitude, Bayesian approach implemented

Sigmoid Dark rate Fit:
$$R_{Dark\ Rate} = \frac{R_{max}}{1 + e^{C \times (V_{50\%})V)} + R_{BaseLine}$$

Max, recordable rate Inst. saturation point voltage point voltage point (noise, radioactivity)

Dark Rate @ 750V, CNM 11486 1e15n

- Sensors with intrinsic gain present dark rate at higher biases
- Brownian thermal electrons following Poisson distribution
- As gain increases, the amount of charge necessary for an event to cross trigger threshold decreases
- ✓ Shot thermal noise increases with voltage
- ✓ Evaluation performed at the 2 fC threshold
- Values estimated from Poissonian fit on event frequency distribution (1000 events)

Comparative Studies - Efficiency

Carbon Implanted Gain Layer - Triger Frequency - Proton Irradiated

Carbon Implanted Gain Layer - Efficiency vs SNR - Neutron Irradiated

Carbon Implanted Gain Layer - Efficiency vs SNR - Proton Irradiated

Breakdown Voltage

Current Multiplier

- ✓ Measure total leakage current (-10°C, -20°C, -30°C)
- ✓ Select a stable voltage range where behaviour follows exponential law
- ✓ Define common for all temperatures stable voltage range, after depletion and much before breakdown
- ✓ Perform exponential fit requesting $R^2 \ge 99\%$ (same range as in the gain reduction fits same constraints)
- ✓ Calculate the multiplier with respect to the expected current
- ✓ Define breakdown in multiplier value (Is it really exponential??)

Un-irradiated:
$$I_{pad}^{\Phi=0} = I_s \times \left(e^{\frac{eV}{nkT}} - 1\right) \times G(e^V, T)$$

Function of acceptor removal, exponential to fluence and voltage plus a linear term

Irradiated:

$$I_{pad}(\Phi) = (I_{pad}^{\Phi=0} + \alpha \Phi) \times G^*(e^V, T, \Phi)$$

Exponential Fit: $I = b \cdot m^V$

Acceptance Criteria: $R^2 \ge 99\%$

Expected current: $I_{norm} = b \cdot m^{V_i}$

Current Multiplier: $M(V) = \left| \frac{I_{pad} + I_{GR}}{I_{norm}} \right|$

Breakdown: $V_{brw} \rightarrow M(V) > 2$

Breakdown Voltage

- ✓ Independent fit for each temperature
- ✓ Identical fit regions across all temperatures
- ✓ Identical fit regions for same fluence across all three implants

Breakdown Voltage

Model

Breakdown of PIN Un-irradiated breakdown voltage $V_b = (V_{max} - V_0) ig(1 - e^{-c\Phi}ig) + V_0$

- ✓ Carbon and boron are compatible
- ✓ Gallium presents higher breakdown voltage (most possibly due to process variation)
- ✓ All implants compatible with sigmoid approach
- ✓ Highest breakdown voltage after irradiation independent of gain exclusively process dependent

