562. A new Triple-GEM Tracking Detector for COMPASS++/AMBER

Karl Jonathan Flöthner*(1,3), Markus Ball(1), Christian Honisch(1), Igor Konorov(2), Michael Lupberger(1), Jan Björn Paschek(1), Emorfi Terzimpasoglou(1), Bernhard Ketzer(1)

(1) University of Bonn (DE), (2) Technische Universität München (DE), (3) European Organisation for Nuclear Research - CERN (CH)

*floethner@hiskp.uni-bonn.de
COMPASS
COmmon Muon and Proton Apparatus for Structure and Spectroscopy

• Located at CERN
• Two-stage spectrometer
• Will be used for AMBER
 • $\mu - p$ elastic scattering
 ▶ Active target
 ▶ 2MHz with 100 GeV μ-beam

COMPASS GEM DETECTORS - K. J. Flöthner [1]
Motivation for new Detectors

- 22 first large-size GEM detectors in operation since 2001/2002 (Replacement and spares needed until 2021)
- General need to upgrade electronics (e.g. exchange outdated connectors)
- Self triggered readout planned in future (i.e. replace APV25 by e.g. VMM)
GEM
Gas Electron Multiplier

- Invented by F. Sauli 1997
- Belongs to MPGD
- Perforated metal-coated polyimide foil
- Standalone amplification stage
 - Separated readout

[Image of GEM diagram with labels: Drift/Transfer, Amplification, Induction/Extraction]

COMPASS GEM DETECTORS - K. J. Flöthner
GEM
Gas Electron Multiplier

[Image of GEM structure with labels for outer and inner diameters, and a zoom-in on pitch and view.]

[Caption: COMPASS GEM DETECTORS - K. J. Flöthner]
COMPASS GEM Detectors

Content:
- Multi-GEM Detector
- COMPASS GEM Generations
Multi-GEM Detector

- COMPASS setup as example
- Cascade of several GEMs
- Higher gain possible
- Discharge prevention
Multi-GEM Detector

- COMPASS setup as example
- Cascade of several GEMs
- Higher gain possible
- Discharge prevention
1st generation large-size GEM (Compass GEM 1st Generation)

- 30.7 cm x 30.7 cm active area
 - Continuous strips
- 13-fold top-sectored GEM
- Spacer frame with grid
- Gas-inlet via support plate
- Honeycomb plates

[9] COMPASS GEM DETECTORS - K. J. Flöthner
PixelGEM (CG2G)

- 10 cm x 10 cm active area
 - 3.2 cm x 3.2 cm pixel area
- 5-fold top-sectored GEM
- Spacer with grids
- Gas-inlet via support plate
- Honeycomb plates
Ongoing large-size GEM (CG3G)

- 30.7 cm x 30.7 cm active area
 - Strips divided in the centre to reduce occupancy
- 13-fold top-sectored GEM
- Spacer without grids
- Gas-inlet via drift plate
- Honeycomb plates
Insight into the design

Content:
- GEM foils
- Readout foil
- Frames
GEM Foil Design

- Triple GEM stack
- Foils segmented on one side: 12 sectors + centre
- All lines guided through one corner with coverlay protection
- Cu thickness reduced
Readout Plane

- Readout from all sides
- 4x768 strips (cut in middle)
- Hirose FX10 replace older Panasonic P5 series
Frame-Stack for one Detector

- Drift-Frame 3 mm
- GEM-Frames 2 mm
- R/O-Frame 2 mm
Drift Frame of 3 mm

- Gas-out
- Alignment holes
- Gas-in
- Gas distributor slits with increasing size
Electronics

Content:
- APV Front-End
- Supply Card
- HV-Board(s)
APV Frontend

Christian Honisch (honisch@hiskp.uni-bonn.de)

- One Detector:
 - 4x Supply card
 - Each 6x APV Front-End
- Improved input protection
- I²C temperature sensor
- I²C addresses: via detector connection
Supply Card

Christian Honisch (honisch@hiskp.uni-bonn.de)

- Provides Power, Clock, Trigger to APV-FE
- Concentrates analog signals from APV-FE
- **Clock, Trigger, Analog: Matched Lengths**

![Supply Card Diagram]

- Power Input
 - 3.3V, 3A(max)
- GPIO
 - I²C, 16 IO
- Clock / Trigger Fanout
 - Outputs Matched to **150ps**
- Ribbon Cable Connector
 - Analog
 - Clock, Trigger
 - I²C
HV Board(s) SVD

Christian Honisch (honisch@hiskp.uni-bonn.de)

- One Detector:
 - 3+1 HV-Boards
 - Stabilized voltage
 - Switchable configuration
 - Low impact of shorted segments
- Short circuit on segment A -> 15mV drop on segment B (previous: 25V)
- Switch for Central Pad Voltage (GEM<500V)
- Protection for Fault Cases
- Monitoring in preparation

<table>
<thead>
<tr>
<th>Electrode</th>
<th>COMPASS / V</th>
<th>BONN² / V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift</td>
<td>-4100</td>
<td>-3255</td>
</tr>
<tr>
<td>GEM1 TOP</td>
<td>-3353</td>
<td>-2508</td>
</tr>
<tr>
<td>GEM1 BOT</td>
<td>-2943</td>
<td>-2102</td>
</tr>
<tr>
<td>GEM2 TOP</td>
<td>-2196</td>
<td>-1751</td>
</tr>
<tr>
<td>GEM2 BOT</td>
<td>-1822</td>
<td>-1384</td>
</tr>
<tr>
<td>GEM3 TOP</td>
<td>-1075</td>
<td>-1068</td>
</tr>
<tr>
<td>GEM3 BOT</td>
<td>-747</td>
<td>-747</td>
</tr>
<tr>
<td>PCB</td>
<td>(GND) 0</td>
<td>(GND) 0</td>
</tr>
</tbody>
</table>
Next Steps

- Commissioning of the new CG3G prototype
- Tests measurements with the new SVD (BONN settings)
- Further production with slight optimizations
- Integration of CG3G detectors in the COMPASS spectrometer
Outlook

- CG3G production
- Further investigations in hybrid readout system
- Prototyping and testing CG4G
- Design for CG5G
- Prototyping and testing CG5G

Self triggered readout e.g. with VMM

Updated Large-size

Large-size with Pixel

2021 2022 2023 2024
Thanks
stay healthy
References

Framing: GEM
STRETCHING TOOLS

- Foil stretching by pneumatic DEK (Vectorguard®) frame produced by ASM Assembly.
- Foils equipped in aluminium profiles (Optiguard®) – see “QA of GEM foils”
- Foil in a profile is installed in the DEK frame
- By applying 0.5 MPa pressure DEK claws open allowing foil to be installed
- Releasing pressure closes DEK claws which stretch GEM
- DEK frame stretching force: 10 N/cm
Readout Frame of 2 mm

- Gas-out
- Gas slits with same size
- Alignment/holding framework
GEM Frame of 2 mm

Planned cutting bridges

Gas-out

Glueing rims
Progression
Of Compass Gem Generations

CG1G
Large-size GEM

CG2G
Updated Large-size

CG3G

Updated Pixel GEM

CG4G
Large-size with Pixel

CG5G
Large-size with Pixel

2001 2008 2021 2022 2023 - 2024?

Pixel GEM

Self triggered readout e.g. with VMM

COMPASS GEM DETECTORS - K. J. Flöthner
Standard parameters

- Outer diameter: 70 µm
- Inner diameter: 50 µm
- 50 µm polyimide
- 5 µm copper
- 140 µm pitch
• Standard parameters
 ▶ Outer diameter: 70 µm
 ▶ Inner diameter: 50 µm
 ▶ 50 µm polyimide
 ▶ 5 µm copper
 ▶ 140 µm pitch
GEM Manufacturing

Double Mask
- Polyimide foil between thin copper layers
- Photoresist lamination, masking, exposure and development
- First metal etching
- Polyimide etching
- Second metal etching
- Second masking to define electrodes
- Last metal etching and cleaning

Single Mask

COMPASS GEM DETECTORS - K. J. Flöthner
First Evaluation of Frames

Drift Frame 01
First Evaluation of Frames

Readout Frame 01

Glueing rims
HV Board(s)

- Resistor chain for high voltage distribution

 › Remote-controlled switch to activate/de-activate central area
 (For CG1G with a separate relay near the detector)

![HV Board Diagram]

C. Altunbas et al., NIM A490, 188 (2002)
HV Board(s)

- One PCB for each foil (logic distributed over four identical boards)
- Stabilized Voltage Divider as second Step Project (idea by H. Müller, RD51)
- Switching of center voltage via I^2C

Further Potential

- Large areas covered
 (~ m2, in order to replace MWPC)

- Beam tracking for high-rate > 100MHz / cm2

- Hybrid readout optimized for fixed target geometry

- Radiation hard (small to no aging observed)

- Miniscule material budget in full active area with < 1% X_0
Detector Simulator

Christian Honisch (honisch@hiskp.uni-bonn.de)

- Simulates detector capacity
- I²C addresses switchable
- Capacity changeable for first two channels
- Can be used to inject test pulses
APV Test Station

- Space for two FE
- Four monitoring ports
 - Analogue positive/negative
 - Trigger
 - Clock
APV Signal Processing
Pulse Shape Reconstruction

- Prove the functionality of new FE
- Three sample mode used
 - Each with 25 ns delay
- Latency scan performed
 - Systematic shift of t_0
- Latency defines at which point the pipeline should be analysed
Pulse Shape Reconstruction

Amplitude vs Latency ID3 channel 42
ENC Observation

• Should give an estimate if the line driver improves the performance

• Realistic test pulse used
 ▶ Corresponds to a MIP
 ▶ 240,000 signal electrons
 - V_{in} set to 3.2 V

\[
ENC = Q_{\text{Signal}} \frac{\text{Noise}}{\text{Signal}}
\]

\[
Q_{\text{Signal}} = V_{\text{in}} \frac{R_2}{R_1 + R_2} C_P = V_{\text{in}} \frac{10 \Omega}{820 \Omega + 10 \Omega} \frac{1}{1 \text{ pF}}
\]
ENC Comparison

ENC in Number of Electrons vs. Channel

APV25 S0

APV25 S1

closed symbols: peak mode: 270 + 38/pF
open symbols: deconvolution: 430 + 61/pF

With line driver

Without line driver

COMPASS GEM DETECTORS - K. J. Flöthner
Requirements

- High spatial and time resolution for optimized tracking
- High rate capability for stable operation
- Small material budget to reduce interactions with dead material
- Build for long-term operation

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial resolution</td>
<td>$< 100 \mu m$</td>
</tr>
<tr>
<td>Time resolution</td>
<td>$\sim 10 \text{ ns}$</td>
</tr>
<tr>
<td>Rate capability</td>
<td>$> 10^4 \text{ part. mm}^{-2} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Small material budget</td>
<td>$0.4 % X_0$</td>
</tr>
<tr>
<td>Large active area</td>
<td>$31 \text{ cm} \times 31 \text{ cm}$</td>
</tr>
<tr>
<td>Low aging</td>
<td>up to 7 mC mm^{-2}</td>
</tr>
<tr>
<td>Discharge prevention</td>
<td>prohibit channel loss</td>
</tr>
</tbody>
</table>

[8]
Scope of Cooperation

• Simulations & GEM production optimization
 (J. Ottnads HV-settings & ALICE experience)

• Self triggered readout:
 ‣ VMM
 (M. Lupberger - Bonn, L. Scharenberg - CERN)
 ‣ TIGER (Torino)

• Front-end design (C. Honisch - Bonn)

• Production:
 FTD (Bonn) and/or CERN

• ADCs and DAQ (I. Konorov - TUM)

• (VonRoll for mass production of frames)

• (Piekenbrink Composite GmbH for Honeycomb Plates)