ATLAS ITk Pixel Detector Overview

TIPP2021

Francisca Muñoz Sánchez

On behalf of the ATLAS ITk Pixel collaboration The University of Manchester 27th May 2021

Outline

- Introduction
- ITk pixel layout
 - Mechanics
 - Design
 - Prototypes
 - Services
- Modules flavours
- Power and data Transmission
- Demonstrators
- Next Steps

Don't miss them!

Poster on the Opto system for data transmission earlier today:

• The Opto-electrical conversion system for the data transmission chain of the ATLAS ITk Pixel detector upgrade for the HL-LHC. Laura Franconi.

Talk on the ITk Strip detector later today:

• The ATLAS ITk Strip Detector System for the Phase-II LHC Upgrade. Karol Krizka.

Talk on 3D sensors and radiation hardness later today:

• Performance of radiation hard 3D pixel sensors for the upgrade of the ATLAS Inner Tracker. Stefano Terzo.

Talk on irradiation studies on DAQ components later in this session:

Irradiation studies at the Bern Cyclotron for the ATLAS ITk Upgrade. Lea Halser.

Poster session last Tuesday:

• RD53 wafer testing for the ATLAS ITk pixel detector. Mark Standke.

Poster session yesterday:

- Testbeam studies of ATLAS ITk strip modules at DESY-II testbeam facility. Marco Valente.
- Evaluation a multi-module demonstrator for the ITk Pixel Outer Barrel for the ATLAS Phase-II upgrade. Gerhard I. Brandt.
- Module development for the ATLAS ITk Pixel Detector. Abhishek Sharma.

Poster session today:

- Monitoring System of the ATLAS ITk Laboratory. Martin Sykora.
- The Monitoring of Pixel System (MOPS) chip for the Detector Control System of the ATLAS ITk Pixel Detector. Rizwan Ahmad.

Introduction

- The LHC will upgrade to the High-Luminosity-LHC (HL-LHC) in 2027 (schedule here)
- The current **ATLAS inner detector** will upgrade to cope with:
 - The peak luminosity: \mathcal{L} HL-LHC = **7.5** × \mathcal{L} LHC = 7.5×10^{34} cm⁻² s⁻¹
 - The average pile-up: <μ>нι-ιнс ~ 8 × <μ>ιнс ~ 200
 - Integrated luminosity: L нс-гнс = 10-13 × L гнс = 3000 4000 fb⁻¹
 - Radiation hardness: $\phi_{HL-LHC} = 20 \times \phi_{LHC} = 2 \times 10^{16} \text{ neq/cm}^2$

The **new ATLAS inner tracker (ITk) pixel detector** will require:

- Increased Radiation Hardness (sensor, chip, cables, mechanics...etc)
- Higher **Granularity** Smaller pixel segmentation
- Higher data rate capabilities
- Evaporative Cooling plant delivering CO2 at -35 C to the pixel system

ATLAS ITk layout

- Pixel Inner Detector 2 layers replaceable. (Si)
- Pixel Outer detector 3 layers (Si).
- Strips Detector 4 layers (Si)
- coverage up to $|\eta| = 4.0$
- Details on the ITk layout and performance: <u>ATL-PHYS-PUB-2019-01</u>

25m -

The University of Manchester

ATLAS ITk Pixel supports: IS design

29 rings
Three flavours

Two flavours of staves

ATLAS ITk Pixel supports: IS prototypes

Prototype 0

Prototype 19-0 (R0/1)

Prototype 19-0 (L0)

Extensive Thermo-mechanical FEA and tests are ongoing

ATLAS ITk Pixel supports: OB prototypes

Full size Layer- 3 longeron and Inclined half ring for the outer barrel. Modular approach for the local support, it allows total re-workability by replacing single cell

ATLAS ITk Pixel supports: OEC design

Same design there different sizes of local supports.

- Double sided half rings
- 1 SP chain per side
- Layer 4 SP chain is of 13 modules

L3

10

ATLAS ITk Pixel supports: OEC prototypes

Extensive Thermomechanical FEA and tests are ongoing

ATLAS ITk pixel cooling: real scale thermo-mechanical mockups

• All subsystems are now developing their final mockups, including realistic

services

ATLAS ITk pixel electrical services: Data and Power cables

CAD modelling of services routing is ongoing

ATLAS ITk pixel electrical services: Data and Power cables

ATLAS ITk pixel electrical services: Data and Power cables

The University of Manchester

ATLAS ITk pixel electrical services: IS On detector services

Data and power are integrated in a Patch Panel for the inner system

ATLAS ITk pixel electrical services: OB On detector services

ATLAS ITk pixel electrical services: OEC On detector services

Power and data PPO are separated in the OEC approach:

- Power bus tape loaded in the ring and power pigtails connect to modules
- Data PPOs to route data lines from several modules to the same cable bundle

ATLAS ITk pixel detector: Modules

- Modules flavours:
 - 3D triplets (three Front-Ends) in the innermost layer (Layer-0):
 - 25 x 100 um² in the barrel staves
 - 50 x50 um² in the rings
 - Planar Quads (four Front-Ends) in layers 1 to 4. 50 x50 um². n-in-p sensors:
 - 150 um for Layers 2 to 4
 - 100 um for layer 1
- Dedicated task force evaluating several combinations of pixel sizes in the inner system in terms of radiation hardness, production yield and performance. Note on the tracking performance: ATL-PHYS-PUB-2019-014
 - 25x100 um2 in the barrel stave improves the performance, the impact parameter resolution: d0 (e.g. low P_T , b-tagging)

FE chip ITkPix readout based on the developed RD53 65nm technology

RD53 wafer testing for the ATLAS ITk pixel detector. Mark Standke.

ATLAS ITk pixel detector: Power and data transmission

- Serial powering chains up to 13 quad modules.
- One Monitor Of Pixel System (MOPS) chip per SP-chain to monitor:
 - Temperature
 - Voltage drops
- A Detector Control System (DCS)
- Twinax cables will drive data at 1.28 Gbps from PPO (Patch panel) to the optoboxes

Poster session today:

- <u>Monitoring System of the ATLAS ITk Laboratory</u>. Martin Sykora.
- The Monitoring of Pixel System (MOPS) chip for the Detector
 Control System of the ATLAS ITk Pixel Detector. Rizwan Ahmad.
- The Opto-electrical conversion system for the data transmission chain of the ATLAS ITk Pixel detector upgrade for the HL-LHC. Laura Franconi.

Talk on irradiation studies on DAQ components later in this session:

<u>Irradiation studies at the Bern Cyclotron for the ATLAS ITk Upgrade</u>.
 Lea Halser.

ATLAS ITk pixel detector: Demonstrators

Outer Endcaps

- FEI4 demonstrator (left)
- Layer 3 local support prototype ready (right) to be loaded with 22 RD53A modules (2 SP chains)

Summary

- Pixel ITk layout
 - Local supports: design and prototypes
 - Off detector Services Routing
 - On detector services
- Module flavours overview
- Power and data transmission
- Demonstrators: production chain and system test

Next steps

- Final design review for local supports and services
- RD53A Demonstrators loading and testing (system test from local support up to the DAQ)
- Itkpix_vx module testing
- Preparation for module production
 - Loading
- Integration

Don't miss them!

Poster on the Opto system for data transmission earlier today:

• The Opto-electrical conversion system for the data transmission chain of the ATLAS ITk Pixel detector upgrade for the HL-LHC. Laura Franconi.

Talk on the ITk Strip detector later today:

The ATLAS ITk Strip Detector System for the Phase-II LHC Upgrade. Karol Krizka.

Talk on 3D sensors and radiation hardness later today:

• Performance of radiation hard 3D pixel sensors for the upgrade of the ATLAS Inner Tracker. Stefano Terzo.

Talk on irradiation studies on DAQ components later in this session:

Irradiation studies at the Bern Cyclotron for the ATLAS ITk Upgrade. Lea Halser.

Poster session last Tuesday:

• RD53 wafer testing for the ATLAS ITk pixel detector. Mark Standke.

Poster session yesterday:

- Testbeam studies of ATLAS ITk strip modules at DESY-II testbeam facility. Marco Valente.
- Evaluation a multi-module demonstrator for the ITk Pixel Outer Barrel for the ATLAS Phase-II upgrade. Gerhard I. Brandt.
- Module development for the ATLAS ITk Pixel Detector. Abhishek Sharma.

Poster session today:

- Monitoring System of the ATLAS ITk Laboratory. Martin Sykora.
- The Monitoring of Pixel System (MOPS) chip for the Detector Control System of the ATLAS ITk Pixel Detector. Rizwan Ahmad.

Thank you for your attention.

Questions?

ATLAS ITk pixel: mechanics design

• ITk pixel detector is divided in three different subsystems with different support structures:

Outer Barrel: Longerons and inclined rings

Outer Endcaps: Half-rings

Inner System: Staves and rings

