Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique

Kelsey C Oliver-Mallory Imperial College London May 25th, 2021

On behalf of the LUX collaboration

Detection Technique

Fiducialization

- Xe is "self shielding"
- Edge event rate is 3-4 orders of magnitude > center rate

- - Fiducial volume

Spin-independent WIMP-nucleon Limit

- LUX 33.5 tonne-day
 - WS2013 (95 live days) +
 WS2014-16 (332 live days)
 - lowest 90% CL exclusion = 0.11 zb at 40 GeV/c
 - PRL, 118, 021303, 2017
- Moved on to physics searches in different energy ranges, and analyses that would benefit near-future LUX-ZEPLIN (LZ)
- Low-mass (sub-GeV) dark matter

Very Low Energy Recoils in Xe Detectors

- Electron Detection Efficiency 50-100%
- Photon Detection Efficiency ~10%
- Yield turns in favor of electrons

Electrode Backgrounds

Cut Events in Non-uniform E-field

Boosted Decision Tree (BDT)

Parameters that quantify the S2 shape

- Time to 10%, 25%, 50%, 75%, 95%, 90% of the full pulse area
- Maximum pulse height
- Time of the maximum pulse height
- Time at which the rising and falling edges of the pulse reach 0 phd/sample

Boosted Decision Tree (BDT)

Training/testing dataset

- Background data: Low-energy background events with S1 and drift time corresponding to gate or cathode
- Signal data: Tritium beta decay calibration source

Receiver Operator Characteristic

Acceptance/Rejection

Spectrum

7 events/tonne/day/e⁻ at threshold

Charge Yield

- NR cutoff = 0.3 keV
- ER cutoff = 0.186 keV

Result

- Yellin's p-max test statistic
- WS2013 5 tonne day exposure

Training+Testing Data

WS2013 Waveforms

Background-like (Cathode-like by eye)

WS2013 Waveforms

18

BDT with only Half Width

Conclusion

- Developed a technique for mitigating grid electrode backgrounds based on S2 pulse shape
- Demonstrated technique can improve Poisson limits by a factor of 2-7
- Using a LUX, 5 tonne day exposure set competitive limits on low-mass dark matter
- Suggest refining technique for near future experiments like LZ

Sanford Underground Research Facility

LUX Fully Constructed

20

03

4850 ft Underground

LZ Construction in Progress

Data Selection Criteria

Large Event Veto

Skew-gaussian Fits to S2 Pulses

BDT with only Half Width

