CRYSTALiZe: A SOLID FUTURE FOR LZ

SCOTT KRAVITZ, HAO CHEN, RYAN GIBBONS, SCOTT HASELSCHWARTD, SHILO XIA, PETER SORENSEN
LAWRENCE BERKELEY NATIONAL LAB

TIPP 2021
MAY 25, 2021
THE FUTURE OF DIRECT DETECTION

- Xe TPCs excel at WIMP direct detection searches
- LZ: next generation Xe TPC - physics data this year!
- What happens next?
- Ultimate goal: detect DM or reach neutrino floor/fog
- Simply increasing detector size likely insufficient!

Dark Matter Searches: Past, Present & Future

Gaitskell et al. (200828T2113) Snowmass LOI

Solar neutrino limit (approximate)
LZ LIMITATIONS FROM BACKGROUNDS

Figure from LZ: arXiv:1802.06039

1100 BG events
800 from Rn
200 from solar nu
<1 atm. nu
40 8B nu

w/ 99.5% ER/NR discrimination,
4 of 6 bkg events from Rn
1 from solar nu ER

Internal backgrounds!
RUN LZ FOR LONGER?

Doesn’t work.
Backgrounds win, mostly radon
Sensitivity scales poorly with exposure when bkg limited

Discovery potential depends even more strongly on background level than sensitivity
GET BETTER AT RADON REDUCTION?

- Active area of R&D. HARD.
- Limited prospects for Rn removal during circulation/purification
 - Removal w/ carbon traps problematic due to activity of traps
 - Perfect removal at purification site (e.g. cryogenic distillation) requires 2000 slpm flow rate for 10x Rn reduction at LZ scale
 - Larger experiments require even more flow

XENON1T cryogenic distillation achieves ~20% Rn reduction (slides)
Solution: CrystaLiZe

- Freeze LZ:
 Radon emanated from surfaces now excluded from solid bulk*

- In cristaLiZe, Rn in bulk target from LXe phase would be fixed, decay away in O(100) days

- In crystal, radon decay daughters stay at same (x,y,z) as parent* -> tagging/veto

- Reduction in Rn chain daughters of nearly 100x

*Diffusion of Rn in solid Xe to be studied to verify
CRYSTAL XE AS A PARTICLE DETECTOR

• Solid and liquid xenon have similar physical properties

• Solid/gas two-phase xenon TPC is expected to perform as well as a liquid/gas xenon emission TPC
 • band gap (E -> detectable signal)
 • electron mobility (doubled)
 • electron emission
 • density (20% bonus!)
 • high voltage

• Similar scintillation signal observed in solid and liquid
 • Potential for improved ER/NR discrimination (due to changes in e-/Xe\(^+\) recombination)
CHALLENGES BEING STUDIED

- Single e- sensitivity for S2s? (HV)
- Retaining high purity while crystallizing
 - Likely requiring elevated temperature bakeout
 - Would take multiple months to crystallize LZ w/o defects (unknown if this is necessary for good signal collection)
- Precise temperature gradients require more elaborate control/measurement of T
- R&D: use small scale crystalline Xe TPC test bed to gauge performance
TEST BED DESIGN

• Two phase Xe mini-TPC at LBL
• ~700 g Xe when full
• S1 and S2 readout:
 8 SiPMs (4 top, 4 bottom; Hamamatsu S13370)

![Graph showing noise, single dark counts, and double dark counts.]

![Diagram of Xe level in TPC.]

![Image of bottom SiPM array beneath cathode wires.]
TPC OPERATION

• Observe S1s and S2s in Xe
• Clear indications of freezing:
 • Vapor pressure below triple point
 • Drift time halves
• Po plated on cathode wires: α calibration source

Typical 57Co waveform recorded in crystalline/vapor TPC

Note: triple point
$T = -111.8 \, \text{C}, \quad p = 0.82 \, \text{Bar}$
SCINTILLATION IN LXE VS SXE

- Co S1 size slightly smaller
 - 2014 FNAL work* also missing 15% of Co scintillation photons in crystalline state
- Po S1 size similar or slightly larger
 - Possible instrumentation effect: calibrate out single photon size but cross-talk may vary?

Systematic difference for Co (ER) vs Po (NR) – change in e-/Xe+ recombination?

*arXiv:1410.6496
SIMULATION: REPRODUCE LUX BANDS

Simulate LUX bands in LXe
Simulate LUX bands in LXe

Assumptions for SXe:
Same as LXe except ERs get a 15% fewer photons which are replaced (one-to-one) by electrons (NR unchanged)
Worse light collection -> wider ER band
But also band means separate
Net effect is an improvement in discrimination
SIMULATION: ER/NR BAND SEPARATION
(HYPOTHETICAL 15% RECOMBINATION SHIFT)

SXe equivalent
(15% light -> charge)

Leakage fraction \(\sim (4-10)\times\) smaller 10-30 phe:
allows further reduction of remaining ER bkgs
(neutrino ERs, Kr, \(^{136}\)Xe, …)
NEXT STEPS

• Test bed upgrades:
 • More SiPMs, better light collection, position info
 • Higher extraction field w/ new HV feedthroughs
• Further measurements:
 • Proper study of charge (S2 size) in LXe vs SXe
 • Study Rn diffusion, Rn tagging
 • Single e- study
 • Effects of freezing speed/procedure
SUMMARY

- Reaching the solar neutrino limit for DM direct detection will require innovation in detector design
- The solid xenon TPC is a promising new particle detector technology
 - Expected to maintain the benefits of LXe TPCs (or more!)
 - Ability to remove the primary background to DM searches, internal radon
 - Potential for further addressing remaining ER backgrounds through improved discrimination