CRYSTALIZE: A SOLID FUTURE FOR LZ

SCOTT KRAVITZ, HAO CHEN, RYAN GIBBONS, SCOTT HASELSCHWARDT, SHILO XIA, PETER SORENSEN LAW RENCE BERKELEY NATIONAL LAB

TIPP 2021

MAY 25, 2021

THE FUTURE OF DIRECT DETECTION

- Xe TPCs excel at WIMP direct detection searches
- LZ: next generation Xe TPC physics data this year!
- What happens next?
- Ultimate goal: detect DM or reach neutrino floor/fog
- Simply increasing detector size likely insufficient!

LZ LIMITATIONS FROM BACKGROUNDS

RUN LZ FOR LONGER?

Doesn't work. Backgrounds win, mostly radon

Sensitivity scales poorly with exposure when bkg limited

Discovery potential depends even more strongly on background level than sensitivity

GET BETTER AT RADON REDUCTION?

- Active area of R&D. HARD.
- Limited prospects for Rn removal during circulation/purification
 - Removal w/ carbon traps problematic due to activity of traps
 - Perfect removal at purification site (e.g. cryogenic distillation) requires 2000 slpm flow rate for 10x Rn reduction at LZ scale
 - Larger experiments require even more flow

XENON1T cryogenic distillation achieves ~20% Rn reduction (slides

Solution: CrystaLiZe

• Freeze LZ:

Radon emanated from surfaces now **excluded** from solid bulk*

• In crystaLiZe, Rn in bulk target from LXe phase would be fixed, decay away in O(100) days

same LZ emanation and dust assumptions

- In crystal, radon decay daughters stay at same (x,y,z) as parent* -> tagging/veto
- Reduction in Rn chain daughters of nearly 100x

*Diffusion of Rn in solid Xe to be studied to verify

CRYSTAL XE AS A PARTICLE DETECTOR

- Solid and liquid xenon have similar physical properties
- Solid/gas two-phase xenon TPC is expected to perform as well as a liquid/gas xenon emission TPC
 - band gap (E -> detectable signal)
 - electron mobility (doubled)
 - electron emission •
 - density (20% bonus!)
 - high voltage
- Similar scintillation signal observed in solid and liquid
- cf. arXiv:1410.6496 and arXiv:1508.05903
- Potential for improved ER/NR discrimination (due to changes in e-/Xe⁺ recombination)

TABLE II. Comparison of transport parameters in solid and liquid xenon. Values of other data used in the calculations are als

 4.2×10^{-9}

1.01

 3.8×10^{-9}

0.93

EG G

€∞

 m^*

Tp

L

B

a

 $|E_{1CB}|$

liquid xenon. Values of other data used in the ns are also quoted.			10 4464 (1974)
Solid T =161.2 °K	Liquid T = 163 °K	Unit	
9.272	9.22	eV	
1.063	1.084	eV	
2.00 ^a	1.85 ^b		
0.31 c	0.27	electron mass	
4.5×10^{3} d	$2.2 \times 10^{3} e$	$cm^2 V^{-1} sec^{-1}$	
8.0 $\times 10^{-13}$	3.4×10^{-13}	sec	
7.1×10^{-6}	3.3×10^{-6}	cm	
1.36×10^{10} f	0.58×10^{10} g	dyn/cm ²	

cm

eV

JFTP 55 860 (1982)

Phys Rev B

CHALLENGES BEING STUDIED

- Single e- sensitivity for S2s? (HV)
- Retaining high purity while crystallizing
 - Likely requiring elevated temperature bakeout
 - Would take multiple months to crystallize LZ w/o defects (unknown if this is necessary for good signal collection)
- Precise temperature gradients require more elaborate control/measurement of T
- **R&D:** use small scale crystalline Xe TPC test bed to gauge performance

TEST BED DESIGN

- Two phase Xe mini-TPC at LBL
- ~700 g Xe when full
- S1 and S2 readout:
 8 SiPMs (4 top, 4 bottom; Hamamatsu S13370)

TPC OPERATION

- Observe S1s and S2s in Xe
- Clear indications of freezing:
 - Vapor pressure below triple point
 - Drift time halves
- Po plated on cathode wires: α calibration source

Note: triple point

Typical ⁵⁷Co waveform recorded in crystalline/vapor TPC

SCINTILLATION IN LXE VS SXE

- Co S1 size slightly smaller
 - 2014 FNAL work* also missing 15% of Co scintillation photons in crystalline state
- Po S1 size similar or slightly larger
 - Possible instrumentation effect: calibrate out single photon size but cross-talk may vary?

*arXiv:1410.6496

Systematic difference for Co (ER) vs Po (NR) - change in e-/Xe+ recombination?

SIMULATION: REPRODUCE LUX BANDS

Simulate LUX bands in LXe

SIMULATION: REPRODUCE LUX BANDS

Simulate LUX bands in LXe

Assumptions for SXe:

Same as LXe except ERs get a 15% fewer photons which are replaced (one-to-one) by electrons (NR unchanged)

Worse light collection -> wider ER band But also band means separate

Net effect is an improvement in discrimination

SIMULATION: ER/NR BAND SEPARATION (HYPOTHETICAL 15% RECOMBINATION SHIFT)

NEXT STEPS

- Test bed upgrades:
 - More SiPMs, better light collection, position info
 - Higher extraction field w/ new HV feedthroughs
- Further measurements:
 - Proper study of charge (S2 size) in LXe vs SXe
 - Study Rn diffusion, Rn tagging
 - Single e- study
 - Effects of freezing speed/procedure

SUMMARY

- Reaching the solar neutrino limit for DM direct detection will require innovation in detector design
- The solid xenon TPC is a promising new particle detector technology
 - Expected to maintain the benefits of LXe TPCs (or more!)
 - Ability to remove the primary background to DM searches, internal radon
 - Potential for further addressing remaining ER backgrounds through improved discrimination

