The PandaX-4T Dark Matter Experiment

Low Background Control

Zhicheng Qian
Institute of Nuclear and Particle Physics
Shanghai Jiao Tong University
2021/5/25, TIPP 2021
Summary

Background Estimation

PandaX-4T Detector & Current Status

Introduction
Dark matter

![Graph showing velocity versus distance for dark matter observations.]

- Observations from starlight
- Observations from 21 cm hydrogen
- Expected from the visible disk

Velocity (km s⁻¹)

![Diagram illustrating dark matter experiments and categories: WIMP, Ionization, Light, Heat.]

- **WIMP**: CoGenT, DMTPC, DRIFT
- **Ionization**: PandaX, LUX/LZ, XENON, ArDM, Darkside
- **Light**: DAMA/UBRA, KIMS, DEAP, XMÉSS, MiniCLEAN
- **Heat**: CRESST II
- **CDMS**
- **Target**
- **PICO, Picasso, Simple, Coupp**

TIPP2021, Zhicheng Qian
Dual-phase xenon TPC technique

• S1: prompt scintillation signal
• S2: delayed ionization signal

Signal feature

Advantages of Time Projection Chamber (TPC)

• Liquid xenon shielding ability no long-life isotopes easy to be purified
• 3-D position reconstruction Z position from S1-S2 drift time X-Y positions from S2 photomultiplier (PMT) pattern
• Identification of electron recoil (ER) and nuclear recoil (NR) signals
PandaX project

PANDAX = Particle and Astrophysical Xenon Experiments

- **PandaX-I:** 120 kg
- **PandaX-II:** 580 kg
- **PandaX-4T:** 4 tons

2009 → 2014 → 2019

TIPP2021, Zhicheng Qian
China Jinping Underground Laboratory

Jingping Underground Laboratory, Sichuan, China
2400-m marble overburden

Cosmic ray flux
about 1.2 events/m²/week

Radioactivity of natural marble
$^{238}\text{U} \sim 4 \text{ Bq/kg}$, $^{232}\text{Th} \sim 0.6 \text{ Bq/kg}$, $^{40}\text{K} \sim 4 \text{ Bq/kg}$

Horizontal access
convenient

TIPP2021, Zhicheng Qian
PandaX-4T layout
Distillation system for removing ^{85}Kr and ^{222}Rn

<table>
<thead>
<tr>
<th>Distillation Tower</th>
<th>PandaX-II (achieved)</th>
<th>PandaX-4T (designed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{\text{nat}}\text{Kr}$ level</td>
<td>6 ppt</td>
<td>0.1 ppt</td>
</tr>
<tr>
<td>^{222}Rn level</td>
<td>$^{222}\text{Rn} \sim 25 \text{ μBq/kg}$</td>
<td>$^{222}\text{Rn}\leq1 \text{ μBq/kg}$</td>
</tr>
<tr>
<td>Operation mode</td>
<td>Offline</td>
<td>Offline and online</td>
</tr>
</tbody>
</table>

- Successfully commissioned the tower
- 0.5 ppm $^{\text{nat}}\text{Kr}/\text{Xe}$ in commercial xenon reduced to <10 ppt (RGA + cold trap system limit) after distillation
- ^{222}Rn can be removed during online distillation
Cryogenics and xenon handling system

• Designed total cooling power: > 360 W @ 178 K
• Operating two cooling heads (plus one spare) for ~6 tons liquid xenon, capable to liquify ~0.7 tons liquid xenon per day
• Expected flow rate of online circulation with zirconium getter ~100 slpm
PMT, Electronics & DAQ

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Total channels</th>
<th>FADC Sampling Rate</th>
<th>Trigger mode for DM runs</th>
<th>Data transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>PandaX-II</td>
<td>158</td>
<td>100 MS/s</td>
<td>Global Trigger (for S2 signals)</td>
<td>Daisy chains, limit ~80 MB/s</td>
</tr>
<tr>
<td>PandaX-4T</td>
<td>~500</td>
<td>250 MS/s</td>
<td>Triggerless (channel self-trigger)</td>
<td>Parallel Readout, limit ×10</td>
</tr>
</tbody>
</table>

Average rate:
- 540 Hz for room temperature
- 20 Hz for low temperature (-60 °C in cold chamber)
- 5.5E6 for gain
- 1300-1500 V for high voltage

TIPP2021, Zhicheng Qian
TPC

Drift region: 1.2 m(H) x 1.2 m(D)

Designed field:
- Drift: 400 V/cm
- Extraction: 6 kV/cm

- 3-inch PMTs, 169 top/199 bottom
- 1-inch veto PMTs, 144

TIPP2021, Zhicheng Qian
Background Sources

Material Background
PMT, Stainless Steel, PTFE, Copper

Background in xenon target
222Rn, 85Kr, 136Xe

Physics background
8B, hep, 7Be neutrinos
Low Background Control

Materials screening with variety of ultra-low radioactive detection techniques

HPGe
- Sensitivity: ~mBq/kg

ICPMS @PKU
- Sensitivity: ~ppt

Radon emanation measurement system
- Sensitivity: ~2 mBq

Krypton counting station
- Sensitivity: ~10 ppt

Alpha Mega detector
- Blank rate: <24 counts/day

Radon emanation trap system
- Sensitivity: ~0.05 mBq
Low Background Control

Before

![Before image](image1)

After

![After image](image2)

Copper plate

Teflon bolts/nuts

Rigorous cleaning procedures established

<table>
<thead>
<tr>
<th>Copper</th>
<th>PTFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrease: 1% Alconox® + ultrasonic cleaning (2 times, 15 min each)</td>
<td>Ultrapure water + ultrasonic cleaning (15 min)</td>
</tr>
<tr>
<td>Pickling: 1% H$_2$SO$_4$+3%H$_2$O$_2$ (5 min)</td>
<td>Acetone + ultrasonic cleaning (15 min)</td>
</tr>
<tr>
<td>Passivation: 1% C$_6$H$_8$O$_7$ (5 min)</td>
<td>Alcohol + ultrasonic cleaning (15 min)</td>
</tr>
<tr>
<td></td>
<td>Ultrapure water + ultrasonic cleaning (15 min)</td>
</tr>
<tr>
<td></td>
<td>Immersed in 35% Ultrapure HNO3 (1 week)</td>
</tr>
<tr>
<td></td>
<td>Ultrapure water + ultrasonic cleaning (15 min)</td>
</tr>
</tbody>
</table>
Background Budget

mDRU = 10^{-3} events/day/kg/keV

(4.9±0.5) $\times 10^{-2}$ mDRU

- Neutrino 18%
- Inner Vessel 13%
- Outer Vessel 18%
- PMT 9%
- PTFE 1%
- Copper 2%
- 222Rn, 85Kr, 136Xe 39%

Stainless Steel

(2.8±0.5) $\times 10^{-4}$ mDRU

- Neutrino 29%
- Inner Vessel 17%
- Outer Vessel 19%
- PMT 28%
- PTFE 5%
- Copper 2%
- Neutrino 29%
- 222Rn, 85Kr, 136Xe

Fiducial mass: 2.8 tons

TIPP2021, Zhicheng Qian
Sensitivity

- Projected WIMP sensitivity is 6×10^{-48} cm2 with 5.6-ton-year exposure for 40 GeV/c2 WIMP mass

<table>
<thead>
<tr>
<th>Unit: events</th>
<th>ER</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-year yield</td>
<td>2.5±0.3</td>
<td>2.3±0.4</td>
</tr>
</tbody>
</table>
Summary

- CJPL-II B2 PandaX-4T facilities is ready since 2019/8
- Rigorous material assay and cleaning procedures have been established to control the background contribution
- Subsystem installation and assembly have been completed
- PandaX-4T commissioning is ongoing
- Real data coming soon, stay tuned
Thanks.

Zhicheng Qian
Institute of Nuclear and Particle Physics, Shanghai Jiao Tong University
2021/5/25, TIPP 2021
Background budget

<table>
<thead>
<tr>
<th>Sources</th>
<th>ER in mDRU</th>
<th>NR in mDRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>0.0210±0.0042</td>
<td>(2.0 ± 0.3) × 10^{-4}</td>
</tr>
<tr>
<td>^{222}Rn</td>
<td>0.0114±0.0012</td>
<td>–</td>
</tr>
<tr>
<td>^{85}Kr</td>
<td>0.0053±0.0011</td>
<td>–</td>
</tr>
<tr>
<td>^{136}Xe</td>
<td>0.0023±0.0003</td>
<td>–</td>
</tr>
<tr>
<td>Neutrino</td>
<td>0.0090±0.0002</td>
<td>(0.8 ± 0.4) × 10^{-4}</td>
</tr>
<tr>
<td>Sum</td>
<td>0.049±0.005</td>
<td>(2.8 ± 0.5) × 10^{-4}</td>
</tr>
<tr>
<td>2-year yield (evts)</td>
<td>1001.6±102.2</td>
<td>5.7±1.0</td>
</tr>
<tr>
<td>after selection (evts)</td>
<td>2.5±0.3</td>
<td>2.3±0.4</td>
</tr>
</tbody>
</table>