Low-energy Monoenergetic Neutron Production with a DD-Neutron Source for sub-keV Nuclear Recoil Calibrations in the LUX and LZ Experiments

Will Taylor
Particle Astrophysics (Gaitskell) Lab, Brown University
On behalf of the LUX and LZ Collaborations

TIPP 2021
Virtual, May 24-28
Operation of Liquid Noble TPCs

- Particle interactions produce prompt scintillation (S1) and delayed electron (S2) signals
- 3D position reconstruction via PMT hitmap (xy) and time difference between S1 and S2 (z)
- Background discrimination from S2/S1 ratio
 - 99.8% discrimination, 50% NR acceptance
- Position reconstruction also allows for resolution of multiple vertices in multi-scatter events with O(cm) resolution in xy and O(mm) in z

![Graph showing ER and NR Bands](Phys. Rev. D 95, 012008)

![Diagram of TPC with S1 and S2 signals](Figure from C. Faham (Brown University))
Deuterium-Deuterium (DD) Generator

Monoenergetic 2450 keV neutrons are produced via deuterium-deuterium (DD) fusion at intensities up to 10^9 n/s

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Branching Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^2\text{D} + ^2\text{D} \rightarrow ^3\text{He} + n$ (2.45 MeV)</td>
<td>0.50</td>
</tr>
<tr>
<td>$^2\text{D} + ^2\text{D} \rightarrow ^4\text{He} + \gamma$ (23.84 MeV)</td>
<td>5×10^{-8}</td>
</tr>
</tbody>
</table>

The DD source is an extraordinarily pure neutron source with very little intrinsic gamma contamination. Bremsstrahlung X-rays from ejected electrons in the DD generator are easily shielded by Pb. 99.99% of x-rays can be blocked with 4 mm of Pb

Well-suited for nuclear recoil detection efficiency measurements - known neutron energy and intensity
DD Generator Calibration Techniques

Direct Neutrons
Neutrons exit DD generator and travel directly to the detector.

Deuterium-Reflected Neutrons
Neutrons exit DD generator, reflect off a deuterated target, and travel to the detector.
Geometry and shielding configuration select a specific backscatter angle, retaining monoenergetic feature.
Angle uncertainty is dominated by the size of the reflector target
7.62 cm diameter x 7.62 cm height in these measurements.
Smaller targets have smaller uncertainty, but provide lower reflected neutron flux.

Hydrogen-Reflected Neutrons
Neutrons exit DD generator, reflect off an active hydrogenated target, and travel to the detector.
Hydrogen scattering kinematics are less constrained, resulting in a spectrum of low-energy neutrons, but neutron tagging in the active target permits per-neutron energy measurement via time of flight.
DD Neutron Calibrations

\[E_{nr,A} = \zeta E_n \]
\[\zeta = \frac{4m_n m_A}{(m_n + m_A)^2} \left(1 - \cos \theta_{CM}\right) \]

- Recoil energy absolutely determined by scattering angle thanks to monoenergetic neutron energy

- DD-Direct
 - Use multi-scatter events to measure recoil energy
 - Measure S2 from first scatter to get charge yield
 - Use single scatter events with S2 now as a proxy for energy to get light yield

- D-Reflector / H-Reflector
 - Slower neutrons allow S1 separation by selecting events with >32 cm scatter separation.
 - S1-separable multiscatter events provide per-neutron independent \(L_y \) and \(Q_y \) calibrations
LUX DD Calibration Results

- Direct (2.45 MeV) DD neutron calibrations were successfully deployed in LUX
- Demonstrated observable signal at 1.1 keVnr (Ly) and 0.7 keVnr (Qy)
- Lightest detectable WIMP: $M_{\text{WIMP}}(\text{GeV}) \approx \frac{1}{4} \sqrt{E_{\text{thresh}}(\text{keV}) \times A}$
 - Lower demonstrated threshold → lighter detectable WIMPs
- 7x improvement in sensitivity at a WIMP mass of 7 GeV

Low-mass sensitivity could be robustly improved using high stats calibrations from DD measurements below 3 keVnr

LUX DD Calibration Results

- New results from LUX2016 DD data push Q_y and L_y measurements even lower in energy
- $0.27 \text{ keVnr} - Q_y$
- $0.45 \text{ keVnr} - L_y$

Figures from Donging Huang's PhD thesis
Publication forthcoming

- New results obtained through the combination of a comprehensive signal model, NEST predictions, and less restrictive geometric cuts to improve event statistics in combination with a pulsed DD neutron source
- See CPAD 2018 talk for additional information
Improvements in Adelphi Technologies DD Generator

- The Gaitskell group at Brown worked with Adelphi to improve the instantaneous intensity (neutrons per second) and reduce pulse width
 - Commercial development guided by dark matter research interests
- Pulsed source allows very clear background estimation of small \(S_1, S_2 \) which is critical for low energy and (S2-only) event rate signal vs background analyses
 - Dongqing Huang’s LUX analysis makes use of 20 us wide pulsing structure → pushed down to single phe events
 - Demonstrated 12 us FWHM with upgrades
- Signal-to-noise ratio is inversely proportional to the neutron pulse duty cycle
 - Reduce duty cycle to improve signal
- Intensity increased by factor of 10
 - Offsets drops in duty cycle
DD Generator Deployment in LZ

- Two conduits connected to the OCV and the water tank wall
 - one angled
 - one horizontal

- DD generator sits outside water tank and fires down conduits
 - Generator is on a lift that provides x/y as well as z translation for positioning
 - Borated poly shielding provides 100x reduction in isotropic neutron flux
 - Shielding has a window aimed toward conduit
DD Generator Deployment in LZ

- Two conduits connected to the OCV and the water tank wall
 - one angled
 - one horizontal

- DD generator sits outside water tank and fires down conduits
 - Generator is on a lift that provides x/y as well as z translation for positioning
 - Borated poly shielding provides 100x reduction in isotropic neutron flux
 - Shielding has a window aimed toward conduit
D-Reflector Kinematics

- Converts 2.45 MeV neutrons into a tagged monoenergetic 350+/−40 keV (HWHM) source via reflection off a deuterated scintillator behind the DD source (right)
- Passive design component:
 - Deuterium reflector material gives maximum energy reduction that retains a narrow, monoenergetic reflected neutron peak.

Experimental setup at Brown University
D-Reflector Active Tagging

- Active EJ315 scintillator Deuterium Loaded “D-Reflector”:
 - Neutron energy info via pulse size
 - Neutron/gamma discrimination via PSD
 - Fast (4 ns) timing resolution on scatter

- Signal + PSD cuts further isolate clean, monoenergetic 350 keV neutrons down the conduit.

- Time of flight measurements permit per-neutron energy reconstruction

\[\theta_{\text{LAB}} = 141 \pm 11^\circ \]
\[350 \pm 40 \text{ keV} \]

Demonstrated at Brown water tank in LZ Conduit Geometry delivering 4 n/s ToF tagged neutrons

Reflected 350 keV neutrons spectrum into Brown conduit

\[\text{ToF measured neutron energy [keV]} \]
\[350 \text{ keV} \]
\[\text{FWHM 85 keV} \]

\[77\% \pm 3\% \text{ within 260-440 keV} \]
Optimized Demonstration at Brown

- Time of flight test at Brown setup has demonstrated efficient D-reflector operation.
 - 350 keV (red) and 1820 keV (green) ToF peaks shown below measure reflection off deuterium and carbon, consistent with sims
 - 50:1 D-peak signal to random coincidence within the peak ToF window

- D-Reflector has been well characterized

Lab measured neutron ToFs

Observed vs Simulated neutron Time-of-Flights
- Measured 1820 keV C-reflected n peak
- Simulated Peak
- Separate cuts used to tag each peak
- Measured 350 keV D-reflected n peak
- Simulated 350 keV D-reflected n peak
- Simulated 350 keV neutrons
- Sim-predicted 350 keV neutrons
- Observed 1820 keV neutrons
- Sim-predicted 1820 keV neutrons

ToF to keV

Reflected 350 keV neutrons spectrum into Brown conduit
- 350 keV
- FWHM 85 keV

Neutron entry spectrum (sim)

Demonstrated at Brown water tank delivering 4 n/s ToF tagged neutrons

Simulation to Data
H-Reflector

- Forward-scattering from hydrogen-dominated scintillator near 90 degrees in lab frame produces tagged neutrons below 100 keV
- ToF from H-Reflector to detector determines n KE for each event
 - All H-reflected low energy neutrons generate clear signals with full neutron/gamma discrimination → all neutrons <100 keV are fully tagged.
- Known neutron energy allows observation of time separation (>40 ns) of S1 vertices in a multiple scatter event for independent L determination:
 - n KE 100 keV / 0.42 cm/ns → 17 cm sep. req. (27% in LXe)
 - n KE 10 keV / 0.13 cm/ns → 5 cm sep req. (61% in LXe)
- H-Reflector Yield Tests being performed at Brown currently

Plot+ simulation from Eamon Hartigan-O’Connor, Casey Rhyne @ Brown University
Conclusions

- DD Generators provide an excellent neutron source for nuclear recoil calibrations in liquid noble TPCs and other dark matter detectors

- Direct 2.45 MeV neutron calibrations have provided charge and light yield measurements down to 0.27 keVnr and 0.45 keVnr in the LUX detector, respectively

- We have also been able to reduce the neutron energies by 1-3 orders of magnitude in both monoenergetic and ToF calibration modes in order to provide additional calibration opportunities at lower nuclear recoil energies

- Deuterium-reflected neutrons can be geometrically constrained to deliver a 350 keV (40 keV HWHM) with both passive and scintillating deuterium targets
 - The active scintillator target provides per-neutron time-of-flight and energy measurement

- Hydrogen-reflected neutrons can be ToF tagged with a scintillator to produce 10-100 keV neutrons for direct calibration of dark matter detectors at ~keV recoil energies
 - Currently studying beam optimization at Brown University
Thank you!

Thanks to our sponsors and 34 participating institutions!

U.S. Department of Energy
Office of Science

Graphic © SLAC, picture overlay N. Angelides