Light only Liquid Xenon experiment (LoLX)

Physics goals and Nitrogen Gas Commissioning

Austin de St. Croix
Queen’s PhD Student at TRIUMF

TIPP 2021
LoLX Collaboration:

TRIUMF

Thomas Brunner, Soud Al Kharusi, Thomas McElroy, Christopher Chambers, Xiao Shang, Eamon Egan

McGill

Carleton University

Simon Viel, Bindiya Chana, Damian Goeldi

SNO+LAB

Pietro Giampa

INFN Pisa

Luca Galli
Marco Francesconi
Simone Stracka

Università di Pisa

Marc-André Tétrault
Julien Roy-Sabourin
LoLux Overview and Phases

Detector

- Single phase LXe, zero applied field
- silicon photomultipliers (SiPMs) for light collection
- design focus is high speed timing

Main Physics Goals

- measure Cherenkov and scintillation yields
- study prompt light characteristics
- external cross-talk in SiPMs

LoLux prototype detector body, black pieces for cable routing (McGill)
LoLX Overview and Phases

Detector
- Single phase LXe, zero applied field
- silicon photomultipliers (SiPMs) for light collection
- design focus is *high speed timing*

Main Physics Goals
- measure **Cherenkov** and scintillation yields
- study prompt light characteristics
- external cross-talk in SiPMs

Experimental Phases
Phase 1: Separation using optical filters, slow digitizer, Hamamatsu SiPMs
- few ns resolution
LoLX Overview and Phases

Detector
- Single phase LXe, zero applied field
- silicon photomultipliers (SiPMs) for light collection
- design focus is high speed timing

Main Physics Goals
- measure Cherenkov and scintillation yields
- study prompt light characteristics
- external cross-talk in SiPMs

Experimental Phases
Phase 1: Separation using optical filters, slow digitizer, Hamamatsu SiPMs
 ~ few ns resolution

Phase 2: upgrade to GHz digitizer (from MEG2 experiment)
 ~ 100ps resolution?

Phase 3: Digital SiPMs, temporal separation of Cherenkov and scintillation light
 ~ 10ps resolution?
The Detector (Phase 1)

Optical filters

- separate Cherenkov and scintillation light

24 Hamamatsu VUV4 SiPMs

- efficiency ~15% at 175 nm (see ref [5])
 (LXe scintillation wavelength)
- 1.5cm x 1.5cm

Radioactive sources placed on needle tip, 370 Bq

- Sr-90 beta (0.55 MeV) → Y-90 beta (2.28 MeV)
- Po-210 alpha (5.4 MeV)
 - not installed
The Detector (Phase 1)

Optical filters
- separate Cherenkov and scintillation light

24 Hamamatsu VUV4 SiPMs
- efficiency ~15% at 175 nm (see ref [5])
 (LXe scintillation wavelength)
- 1.5cm x 1.5cm

Radioactive sources placed on needle tip, 370 Bq
- Sr-90 beta (0.55 MeV) \rightarrow Y-90 beta (2.28 MeV)
- Po-210 alpha (5.4 MeV)
 - not installed

Body is hexagonal prism
- 3D printed body, ‘Formlabs SLA 3D Durable Resin’
- ~ 60% photo coverage
SiPM Layout

24 Silicon Photomultipliers

- Each SiPM has 4 readouts
 - 96 outputs

results in lots of cables!
SiPM Layout

24 Silicon Photomultipliers
- Each SiPM has 4 readouts
 - 96 outputs

22 Cherenkov SiPMs: Longpass optical filter
 - Blocks scintillation light

1 Scintillation SiPM: UV bandpass filter
 - Allows only scintillation light

1 bare SiPM
 - View scintillation and Cherenkov light
 - Emit cross-talk photons
SiPM Layout

24 Silicon Photomultipliers
- Each SiPM has 4 readouts
 ➔ 96 outputs

22 Cherenkov SiPMs: Longpass optical filter
- blocks scintillation light
 4ch summing → +22 digitized channels

1 Scintillation SiPM: UV bandpass filter
- allows only scintillation light
 no summing → +4 channels

1 bare SiPM
- view scintillation and Cherenkov light
- emit cross-talk photons
 no summing → +4 channels

\[8 + 22 = 30\] digitized channels
Simulation

- detector simulated in GEANT4
- preliminary optical data used for detector
- separation between alpha and beta events

Filtered vs. Bare Channels

- ^{90}Sr source
- ^{210}Po source

$^{90}\text{Sr} - Q = 2.28$ MeV
$^{210}\text{Po} - Q = 5.4$ MeV
Cryostat at McGill

Detector held upside-down in vacuum Flange
System Installed!

DAQ System Installed!
Motivation A: nEXO

nEXO is a planned large scale LXe $0\nu\beta\beta$ experiment

- TPC cylinder walls covered in ~ 4.5 m2 of SiPMs
- requires $\sim1\%$ ΔE for background rejection

| gamma from ^{238}U, ^{232}Th near $Q_{0\nu\beta\beta}$

Diagram of a $\beta\beta$ event in nEXO detector (adapted from [4])

Cylinder walls lined with SiPMs
Motivation A: nEXO

nEXO is a planned large scale LXe $0\nu\beta\beta$ experiment

- TPC cylinder walls covered in $\sim 4.5 \text{ m}^2$ of SiPMs
- requires $\sim 1\%$ ΔE for background rejection

↓ energy resolution driven by light collection efficiency (see ref [4])

Diagram of a $\beta\beta$ event in nEXO detector (adapted from [4])
Cylinder walls lined with SiPMs
Motivation A: nEXO

nEXO is a planned large scale LXe $0ν\beta\beta$ experiment

- TPC cylinder walls covered in $\sim 4.5 \text{ m}^2$ of SiPMs
- requires $\sim 1\%$ ΔE for background rejection

.energy resolution driven by light collection efficiency (see ref [4])

LoLX is complementary to nEXO:

- validate photon transport simulations

Diagram of a $\beta\beta$ event in nEXO detector (adapted from [4])
Cylinder walls lined with SiPMs
Motivation A: nEXO

nEXO is a planned large scale LXe $0\nu\beta\beta$ experiment

- TPC cylinder walls covered in $\sim 4.5 \text{ m}^2$ of SiPMs
- requires $\sim 1\%$ ΔE for background rejection

\[\downarrow \text{energy resolution driven by light collection efficiency (see ref [4])} \]

LoLX is complementary to nEXO:

- validate photon transport simulations
- gain experience operating many SiPMs in LXe
 - stability of photo-detection efficiency
 - monitor SiPMs using IV curves

In situ IV curves of 48/96 SiPMs in LoLX (at room temperature)
Motivation A: nEXO

nEXO is a planned large scale LXe $0\nu\beta\beta$ experiment
- TPC cylinder walls covered in $\sim 4.5 \text{ m}^2$ of SiPMs
- requires $\sim 1\%$ ΔE for background rejection
 - energy resolution driven by light collection efficiency (see ref [4])

LoLX is complementary to nEXO:
- validate photon transport simulations
- gain experience operating many SiPMs in LXe
 - stability of photo-detection efficiency
 - monitor SiPMs using IV curves
- study **external cross-talk (eXT)** between SiPMs
 - charge avalanches produce IR photons, trigger other SiPMs
 - see talk by Joe McLaughlin, Thursday, Photodetectors Session
 - “External Cross-talk characterization from dark avalanches in SiPMs”
 - relevant for other experiments such as **Darkside-20k, DUNE** (large area SiPMs facing one another)
Motivation B: Study Cherenkov Light

Cherenkov light in LXe:
- broadband (~150 nm to IR)
- extremely prompt (~ few ps)
- slight directionality in LXe (scattering)
- low yield
Motivation B: Study Cherenkov Light

Cherenkov light in LXe:
- broadband (~150 nm to IR)
- extremely prompt (~ few ps)
- slight directionality in LXe (scattering)
- low yield

Applications of Cherenkov light:
Future LXe $0\nu\beta\beta$ experiments (not nEXO!)
- discrimination against single-scatter gammas: (see ref [1], [7])

Analytic Cherenkov yields for electrons in LXe
(calculated using NIST-eStar data, LXe refractive index from ref [8])
Motivation B: Study Cherenkov Light

Cherenkov light in LXe:
- broadband (~150 nm to IR)
- extremely prompt (~ few ps)
- slight directionality in LXe (scattering)
- low yield

Applications of Cherenkov light:
Future LXe 0νββ experiments (not nEXO!)
- discrimination against single-scatter gammas:
 (see ref [1], [7])

Timing Resolution
- **Time-Of-Flight** in nuclear medical imaging:
 - 10ps resolution (see ref [2], [3])
- higher energy gammas (1-100MeV)
 - TOF calorimetry?

Analytic Cherenkov Spectra

- Calculated using NIST-eStar data, LXe refractive index from ref [8]
Motivation C: Scintillation Signal

scintillation signal has 4 contributions:
excitation / ionization singlet (~2ns) / triplet (~20ns)

- Energy deposited
 - excitation
 - \(\tau \sim 2\text{ns} \)
 - \(\tau \sim 20\text{ns} \)
 - ionization
 - \(e^- + \text{ion recombination!} \)
 - \(\tau \sim 2\text{ns} \)
 - \(\tau \sim 20\text{ns} \)
- UV photon
Motivation C: Scintillation Signal

scintillation signal has 4 contributions:
- excitation/ionization singlet (~2ns)/triplet (~20ns)

Energy deposited

- excitation
 - $\tau \sim 2\text{ns}$
- ionization
 - $\tau \sim 20\text{ns}$
 - $e^- + \text{ion recombination!}$

UV photon

Prompt light!
- alphas or nuclear recoils: fast recombination
- Electron Recoils: slow recombination
Motivation C: Scintillation Signal

Prompt scintillation signal:
- **alphas or nuclear recoils**: *fast* recombination
- **Electron Recoils**: *slow* recombination

prompt signal → timing resolution
discrimination → high mass DM search, other applications

scintillation signal has 4 contributions:
- excitation / ionization
 singlet (~2ns) / triplet (~20ns)

Toy model showing recombination contribution to prompt light
Motivation C: Scintillation Signal

Prompt scintillation signal:
- alphas or nuclear recoils: fast recombination
- Electron Recoils: slow recombination

Prompt signal → timing resolution
discrimination → high mass DM search, other applications

Other studies:
- IR light production
- recombination vs Cherenkov yield
 - ionization fluctuations

scintillation signal has 4 contributions:
excitation / ionization singlet (~2ns) / triplet (~20ns)

Qualitative Photon Intensity

Toy model showing recombination contribution to prompt light
Commissioning: Gaseous Nitrogen

Data taken during summer 2020
- filled with **Nitrogen gas** to cool entire detector
 - operating between -90C to -110C

Goals for GN\textsubscript{2} run:
- commission electronics
- study **external cross-talk** between SiPMs
 - LoLX sensitive to **variety of geometries**
 - (primarily generated by dark noise)
Commissioning: Gaseous Nitrogen

Signal Quality/Commissioning

- great SPE resolution
- consistent breakdown voltages

Example Waveforms from cold GN2 data

Charge histogram for summed channel (4 inputs)

QPE histogram, channel 16

- 1PE
- 2PE
- 4PE
Commissioning: Gaseous Nitrogen

BUT 90Sr source still installed!

- Nitrogen gas scintillates
- literature reports low LY (24 ph/MeV) ref [9]
 - room temperature, field of ~250 V/cm

Variables

NPE - total photons

Nhit - occupancy (channels with > 0.5PE)
Commissioning: Gaseous Nitrogen

BUT ^{90}Sr source still installed!

- Nitrogen gas scintillates
- literature reports low LY (24 ph/MeV) ref [9]
 - room temperature, field of ~250 V/cm
- see LOTS of light!
 - distributed across detector

Variables

- **NPE** - total photons
- **Nhit** - occupancy (channels with > 0.5PE)

investigate Nhit = 2
External Cross-Talk (eXT)
What does it look like?

- prompt pulse pairs across channels
- geometric effect (emitted light refracted ‘down’)

Gaseous Nitrogen Data
External Cross-Talk (eXT)
What does it look like?
- prompt pulse pairs across channels
- geometric effect (emitted light refracted ‘down’)

Gaseous Nitrogen Data

LoLX Detector Unfolded

eXT expectation: channel 25 will be coincident with ‘close’ SiPMs
Gaseous Nitrogen Data

SiPM hits Coincident with SiPM 25

- **red**: Nhit = 2, prompt (4ns)
- **green**: Nhit = 2, late
- **blue**: Nhit > 10, prompt (4ns)
- **pink**: Nhit > 10, late

LoLX Detector Unfolded

eXT expectation: channel 25 will be coincident with ‘close’ SiPMs
Gaseous Nitrogen Data

Not so conclusive...

- SiPM 25 shows qualitative evidence for eXT
 - other channels **do not** show similar
 'step structure' 😞
Investigate in time domain

- time between pulses on different channels
- eXT contribute a large peak around zero
- preserves exponential decay from scintillation
 - everything looks the same!

Conclusion: other fast processes dominate
Gaseous Nitrogen Data

What fast processes?

- N_2 scintillation with 2.5 ns lifetime (see ref [9])
 - data taken at room temperature, E field

- Cherenkov/Fluorescence in glass!
 - β hit wall due to detector size
 - light in filter/quartz **backscatters** into detector

Diagram beta hitting window
Gaseous Nitrogen Data

new variable

- **Fgap** - charge ratio of two brightest channels

 example: \(F_{\text{gap}} = 2 \)

- Pure scintillation \(\rightarrow \) low Fgap
- Window event \(\rightarrow \) high Fgap
Gaseous Nitrogen Data

Data for all channels

new variable

\(\text{Fgap} = \) charge ratio of two brightest channels

\(\text{NPE} = \) total photons
Gaseous Nitrogen Data

Data for all channels

new variable

$F_{gap} = \text{charge ratio of two brightest channels}$

NPE - total photons
Gaseous Nitrogen Data

Window dominated events are **not isotropic**!
- dominant in SiPMs centered on 7
- source **anisotropy**
 - useful for **Cherenkov** study in LXe!
Outlook for LoLX

Commissioning in cold N\(_2\) gas
- some evidence for eXT ...
- other prompt processes make it difficult to extract eXT signal
 - N\(_2\) scintillation, window cherenkov/fluorescence
- source directionality!
- bigger fish to fry → LXe runs

Future outlook
- LXe cooldowns commencing in June!
- use bare SiPM at varying voltage as ‘source’ of eXT photons
- Cherenkov measurement incoming
- other scintillation physics!
- WaveDAQ digitizer prepared for shipping
 phase 2 coming soon!
References

https://arxiv.org/abs/1812.05694v1

https://jnmd.snmjournals.org/content/24/1/73

http://dx.doi.org/10.1007/s00259-011-1763-7

https://arxiv.org/abs/1805.11142

[5] - Characterization of the Hamamatsu VUV4 MPPCs for nEXO
https://arxiv.org/abs/1903.03663

https://doi.org/10.1016/j.nima.2015.05.065

[7] - G. Signorelli, S. Dussoni. “Possible usage of Cherenkov photons to reduce the background in a 136Xe neutrino-less double-beta decay experiment”
https://doi.org/10.1016/j.nima.2015.11.099

https://doi.org/10.1103/PhysRevA.15.2538

[9] - G. Lehaut et al. “Scintillation properties of N2 and CF4 and performances of a scintillating ionization chamber”
https://doi.org/10.1016/j.nima.2015.05.050
24 SiPMs x 4 = 96 output cables

Next upgrade is to WAVEDAQ digitizer
GHz sampling rate!
16ch input amplifier
- in situ IV curves!

RF amp
DC to 2GHz BW

op-amp
optional 4ch summing

CAEN DT1740
Digitizer
62.5MHz sampling
(16ns, slow)

Cryostat at McGill

Cherenkov SiPMs are summed → 22 channels
Bare and bandpass SiPMs unsummed → 8 channels
Extras: Deposition time

Inverting and integrating range as a function of energy, we can find the time for the particle to slow down. This sets the lower limit on the scintillation rise time.
Toy MC: Overview

Variables:
NPE = number of photons per event
\(\tau_1, \tau_2 \) = lifetimes
\(\rho = \frac{N_{\text{fast}}}{N_{\text{slow}}} \)
P = probability of eXT occurring
res = timing resolution (spread of eXT photons)

1. generate scintillation photon times (NPE)
 \(\beta = \frac{\rho}{1 + \rho} \)
 store in vector<float> timesPure

2. generate all TTNP combinations using nested forloops, store in vector<float> gapsPure
3. add eXT induced times for each photon
 loop on photons
 \(t_0 \) //photon time
 if rand() < p_{ext}
 timesPure.push_back\((t_0 + \text{rand::gaus}(0, \text{res}))\)
4. calculate TTNP times again
5. repeat for certain ‘number of runs’ → NPE = 10, run x 1000 is not the same as NPE = 1000, run x10
Toy MC: only slow scint, eXT = 10%, NPE = 10

Slow time constant

<table>
<thead>
<tr>
<th>gapPureA</th>
<th>Entries</th>
<th>450000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>2.612</td>
</tr>
<tr>
<td></td>
<td>Std Dev</td>
<td>8.827</td>
</tr>
</tbody>
</table>

- green: pure wfn
- red: pure TTNP
- pink: eXT waveform
- blue: eXT TTNP

NPE = 10, runs = 10000
- ts = 15.0 ns, tt = 15.0 ns, \(p = 0.5 \)
- eXT: \(p = 10.0\% \), \(\sigma = 1.0 \)
Toy MC: adding fast scint, eXT = 5%, NPE = 2

Again: do better with lower NPE.
Cryostat: Feedthrough

Feedthrough Challenges

- PCB potted feedthrough using STYCAST 2850FT epoxy Black
 - developed a leak
- switched to new strategy using multiple smaller feedthroughs

Cryostat at McGill

96 cables from SiPMs
Extras: Single PE resolution (Oscilloscope)

Histogram charge from many waveforms

1PE waveforms

Total events = 3326
50 events shown

dark noise charge histogram

PE_hist
Entries 10001
Mean 134.1
Std Dev 16.72

1PE peak
2PE peak

Single PE resolution is given by
1PE charge vs gaussian width
Extras: Single PE resolution (Oscilloscope)

Charge resolution is good (with scope)

*no horizontal error bars, which represent uncertainty in breakdown voltage due to temperature uncertainty
Extras: Cerenkov helping 0νBB Experiments

Background Discrimination for Neutrinoless Double Beta Decay in Liquid Xenon Using Cerenkov Light

Jason Philip Brodskya, Samuele Sangiorgioa, Michael Heffnera, Tyana Stieglera

aLawrence Livermore National Laboratory

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
<th>Sensitivity improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline</td>
<td>1.43</td>
</tr>
<tr>
<td>2</td>
<td>Compton Scatters included</td>
<td>1.11</td>
</tr>
<tr>
<td>3</td>
<td>Perfect background rejection</td>
<td>7.61</td>
</tr>
<tr>
<td>4</td>
<td>Back-to-back evenly-split 0νββ</td>
<td>1.96</td>
</tr>
<tr>
<td>5</td>
<td>Back-to-back, even split 0νββ and straighter tracks</td>
<td>5.53</td>
</tr>
<tr>
<td>6</td>
<td>Truth-value Cerenkov ID</td>
<td>1.40</td>
</tr>
<tr>
<td>7</td>
<td>100% detection efficiency</td>
<td>1.59</td>
</tr>
<tr>
<td>8</td>
<td>10% detection efficiency</td>
<td>1.20</td>
</tr>
<tr>
<td>9</td>
<td>No directional information</td>
<td>1.34</td>
</tr>
</tbody>
</table>