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The Experimental Setup

Our refrigerator cools detectors (NTD 
calorimeters & TES-based light 
detectors) to ~ 12 mK.

We have connected accelerometers (top 
right) and a Helmholtz coil antenna 
(bottom right) to measure vibrational 
and electrical noise.

Our goal is to remove vibrational and 
electrical noise from our detectors using 
these “auxiliary” devices.
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Approaching the Problem

Method 1: “Linear” Noise Cancellation 
(LNC)

● Assume a linear transfer function 
from auxiliary devices to bolometers

● Done in Fourier space rather than 
Laplace space (IIR filter, not FIR filter)

● Algorithmically similar to building an 
Average Noise Power Spectrum

Method 2: Adaptive Noise Cancellation 
(ANC)

● First implemented by S. Zimmerman for 
GRETA (NIMA, 2013)

● Assumes a finite impulse response from 
auxiliary devices to bolometers

● Employs a gradient descent algorithm to 
find the transfer function adaptively 

http://dx.doi.org/10.1016/j.nima.2013.06.060


Linear Noise Cancellation (LNC)
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Linear Noise Cancellation

● Original motivation: electrical noise in 
local Berkeley detector data

● Noise should be independent of 
thermal noise

● Measure the noise with helmholtz coil 
antenna attached to our DAQ board

● Time delay and amplitude scaling for 
each frequency from aux to bolo, i.e. a 
linear transfer function
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Removing Electrical Noise

We assume a linear transfer function from the antenna to the bolometer:

A1exp[2πif + iφ1] A2exp[2πif + iφ2]   

The transfer function is thus  H(f) = A1 / A2 exp (φ1 - φ2).

We use an ensemble of noise events and average the transfer functions from 
each noise event.

Transfer functions with coherent phases should add together in the complex 
plane.



LNC Using Berkeley Data

We predict the noise by 
performing an IFFT of the 
transfer function to get a 
convolution kernel.

Convolving this kernel with the 
antenna gives the predicted 
signal.
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Subtracting the predicted signal from the 
original reduces the electrical noise



Berkeley Data LNC Results

Baseline: first 30 ms of the 40 ms prepulse

Mean of baseline RMS decreases by 11.3% (from 
15.9 mV to 14.1 mV)

Amplitude of 
Average Pulse 
increases by 0.5%
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Improvement in Energy Resolution
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Raw Cleaned

E 𝜇 [mV] 𝜎* [mV] 𝜇 [mV] 𝜎* [mV]

1 8.92 2.17 8.74 2.04

2 16.27 2.20 16.18 2.05

3 23.52 2.14 23.43 2.04

4 30.78 2.13 30.75 2.03

5 38.07 2.16 38.00 2.06

Note: Each peak contains ~ 2500 events
*uncertainties on 𝜎 are roughly 0.05 mV



Comparing Fit Resolutions
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E Δ𝜇/𝜇raw Δ𝜎/𝜎raw

1 -2.1% -6.0%

2 -0.6% -6.9%

3 -0.4% -4.8%

4 -0.1% -4.9%

5 -0.2% -4.8%



Adaptive Noise Cancellation (ANC)
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Towards an Adaptive Noise Cancelling Filter
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This algorithm also uses an auxiliary device, e.g. an accelerometer, to predict the 
timestream of the bolometer noise, which can then be subtracted

Main differences from LNC algorithm:

● ANC assumes the bolometer has a finite impulse response (FIR) given an 
impulse signal in the accelerometer

● ANC adapts over time rather than averaging over an ensemble of events

Note: ANC is still linear in its parameters!



ANC Tests at Berkeley
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I have been developing the algorithm using data from 
transition edge sensors (TES) here at Berkeley

To get impulse response information, we tap the cryostat 
several times throughout the run to induce vibrations

Accelerometer timestream is squared and this new 
signal is the input to the algorithm

Noise Analyses of Low-Temperature Detectors



ANC Tests at Berkeley
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Bolometer data shows strong oscillations in 
baseline, clearly due to acoustics

Detector response signal shape is indeed strictly 
positive, though low-frequency oscillations (~ 8 Hz) 
appear as well

Triggers are 
mainly muons



A Linear ANC Algorithm
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Thanks to Sergio Zimmerman, whose algorithm provides a starting point for this development and 
whose guidance has been extremely useful throughout these studies.

d(t): detector signal without noise
p(t): detector response to the mechanical input
s(k): measured signal in bolometer
H(t): true impulse response of bolometer
v(k): accelerometer response to mechanical input

p̂(k): predicted detector response
Ĥ(k): predicted impulse response



Modifying the Original Algorithm
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Since bolometer signal due to acoustics is 
non-negative definite, a linear algorithm 
requires a strictly positive (unipolar) signal

Convergence is otherwise impossible.

This motivates us to square the vibration signal 
(or apply some other nonlinear transformation 
to the signal) before continuing 



Results of Algorithm (Berkeley TES Muon Data)
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Using ANC with Berkeley LED Data
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We employ a fiber-optic cable and an LED to send pulses 
of varying width as proxies for particle events with varying 
energies

As an initial test, we conducted an “LED run” with a single 
pulse width

Initial signal contains muon pulses, LED pulses (smaller), 
electrical noise, and vibrational noises



Results of Algorithm (Berkeley TES LED Data)
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Results of Algorithm (Berkeley TES LED Data)
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Results of Algorithm (Berkeley TES LED Data)
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Some Preliminary Findings
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Summary and Future Plans

23

● Linear Noise Cancellation (LNC) demonstrates a statistically significant 
improvement in energy resolution of NTD calorimeters

● Adaptive Noise Cancellation (ANC) shows improvement in baseline resolution and 
significant reduction in low frequency noise in TES data

Future plans:

● Implement LNC algorithm for wider use with all devices including TES, eventually 
turning to CUORE data for implementation

● Continue to develop ANC algorithm for use with NTDs and comparison with LNC
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Thank You!
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Backup
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Transfer function from antenna to NTD



Amplitude Spectrum of Single Energy After LNC
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NTD and Antenna Power Spectra
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NTD Power Spectrum Before and After LNC
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There exists a better proxy for power 
transmitted to the bolometer than 
simply squaring the accelerometer 
wave function. Instead, we can run it 
through an RMS filter.

Take the accelerometer timestream 
from t = t’ to t = (t’ - t’0) and compute 
the RMS. This is of course a positive 
definite quantity.

Modifying the Original ANC Algorithm



TES Power Spectrum Before and After ANC
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