Muon Trigger with fast Neural Networks on FPGA, a demonstrator

M. Migliorini¹, F. Marini¹,², A. Triossi³, J. Pazzini¹,², M. Zanetti¹,², A. Zucchetta¹

¹INFN Padova, ²University of Padova, ³IPHC Strasbourg
Introduction: **Use Cases**

- Muon detectors are pivotal in several particle physics use cases:
 - Muon tomography is centered on efficiently detecting and tracking muons
 - In HEP colliders, muon final states often provide golden channels for rare processes

- Muon local trigger algorithms are among the first stages of online event selection, often having to cope with demanding conditions:
 - Background noise and large detector occupancy
 - Short available time for trigger decision

- Implemented an algorithm aimed at processing measurements of DTs and based on a **FPGA implementation of Neural Networks** for a fast local muon trigger

- Algorithm tested on a dedicated simulation and on real data acquired from a **muon telescope** installed in the INFN National Laboratory of Legnaro (LNL)
Introduction: miniDT

- Reduced area Drift Tubes detectors assembled and commissioned in LNL
 - Used for the test-beams of the LEMMA collaboration
 - Test-bed for multiple application related to DAQ and electronics

- Each miniDT is composed of 4 layers of cells (tubes) arranged with ½ cell staggering to allow an estimation of the muon track
 - 16 (42x14 mm2) cells per layer
 - A total of ~70x70 cm2 active area per chamber
 - Filled with an Ar-CO$_2$ (85/15%) gas mixture
 - Uniform electric field inside the cell providing a constant drift velocity

- **Electrons avalanche** produced in each cell by the passage of the muon
 - Charge collected by the wires

- **Mean-Timer** algorithm allows to determine the muon passage time without the need of and external trigger
 - Constant drift velocity allows to find the x coordinate
 - Track parameters (slope, intercept) can also be obtained
Introduction: Readout Electronics

Signals produced by the e^- avalanche are amplified, shaped, and discriminated by custom ASIC chips in the Front-End electronics.

- **Two Xilinx VC707 evaluation boards**, hosting Virtex-7 FPGAs:
 - Each VC707 receives signals from 128 channels (2xminiDTs)
 - Time-to-Digital Conversion (TDC) implemented on FPGA
 - Former TDC are serialized with the GBTx-FPGA protocol and sent to the next board

- **One Xilinx KCU1500 evaluation board**, hosting a Kintex Ultrascale FPGA:
 - Receives up to 8 GBTx links
 - Its firmware processes the streams of the entire set of TDC hits from all miniDTs
 - Results of the trigger re-injected into in the data streams
 - Streams are merged in a single stream and sent to a Direct Memory Access engine for offline/online analysis

![Diagram of readout electronics system]
Algorithm: role of **Neural Networks**

- Neural Networks excel at solving complex tasks based on a proper training.

- Once the NN structure and its weights are defined, the evaluation can be **fast**
 - Fixed latency regardless of the inputs
 - Only multiplications and additions performed: suitable for a **FPGA implementation**

- Neural networks can be adopted to **avoid the combinatorial**
 - In the mean-timer algorithm all hits quadruplets and lateralities need to be probed
 - Only the one providing a valid result is considered

- Different conditions of the detector can be reflected by simply **re-training** the models.

All lateralities need to be probed to find the correct track for each group of 3/4 wires.
Algorithm: a **Hybrid Approach**

Local trigger algorithm based on an “hybrid approach”:

1. **Avoid combinatorial by selecting all and only** hits from genuine muons
 - Steps performed using neural networks

2. **Apply analytical relations** only on the selected hits
 - Mean-timer equations and least-squares fit

![Diagram of hits collection, denoising, disambiguation, and local trigger evaluation](image)
Algorithm: **FW implementation** Overview

Building blocks of the algorithm:

- **Hits collection**: stream of hits persisted inside a fixed-length time window
- **Filtering**: collected hits are filtered, i.e. noise hits are removed
 - If 3/4 hits are found, next steps are triggered
- **Disambiguation**: solve laterality ambiguity for the hits passing the filter
- **T\textsubscript{0} finder**: using the information from the disambiguation step find the crossing time using mean-timer technique
 - Apply the correct equation without probing all the different combinations
- **Track parameters estimation**: given t\textsubscript{0} and hits lateralities the points can be placed in the space and perform a linear fit

All hits are stored regardless the trigger decision:

- **Offline evaluation** of the performances

Xilinx KCU1500
Algorithm: Hits Collection

Hits are collected with a sliding window with a persistence of 30 BXs

- Denoising is activated when a hit reach the end of its persistence
- Sub-patterns (e.g., 3-plets out of hits from 4-plet) are not re-evaluated

All patterns found at this grouping stage are sent to the denoising neural network.

![Hits collection and grouping diagram]
Algorithm: Denoising

- Denoising is performed with a NN to remove hits not compatible with a muon (time/space)
- Hits cell and time are used as inputs of the NN
- Outputs are signal/noise flags
- HLS4ML used to convert Keras model to HLS
- Tuning is needed to optimize the accuracy vs resource utilization
 - NN architecture
 - Weights quantization
 - Model pruning
- 3 layers dense neural network
 - 6 bit weights quantization, 50% sparsity
Algorithm: L/R Disambiguation

- A second NN resolves the laterality ambiguity directly after the denoising stage
 - Predict if track passed on the right/left of the wire
- Disambiguation network takes as input the 3/4 hits found by the filtering step
 - Number of input neurons is fixed to 4, one possible hit per layer
 - In case of missing hit a padding value is provided
- Input hits are classified as Left/Right
 - 0 if either the hit is missing in that layer or it has been wrongly classified as signal by filtering network
- 3 layers dense neural network
 - 6 bit weights quantization, 50% sparsity
The t_0 is assigned by means of the mean-timer technique:
- 19 equations based on the triplet pattern
- Once the hits are filtered and L/R is assigned by the neural network, there is **only one equation that fulfill the combination** (per triplet)
- Computed using full TDC-precision, i.e. the maximum precision available

The local angle and intercept are finally evaluated by performing a least-square fit:
- After finding the t_0 it is possible to compute the hit positions
- 3/4 hits points fit used to estimate the track parameters

Trigger primitive inserted in the hit stream for offline evaluation
Resource utilization for a macrocell, i.e. group 4x4 channels:

- **Denoising NN:**
 - Latency: 2 clocks@40MHz
 - LUT: ~6K (~1% of available LUT in the KCU)

- **Disambiguation NN:**
 - Latency: 3 clocks@40MHz
 - LUT: ~5K (~1% of available LUT in the KCU)

- **Trigger primitive evaluation**
 - Latency 7 clocks@40MHz
 - LUT: ~6K (~1% of available LUT in the KCU)

Resources can be shared between macrocells:

- Based on the expected occupancy the ratio between different blocks can be tuned
- Optimal resource utilization
Performance: **Simulation and Training**

Dedicated simulation used as training dataset for the NNs:

- Flat muon spectra in both local position and angle
- Hit smearing according to spatial resolution (250 μm)
- Cell inefficiencies/additional noise are simulated by removing/adding hits
- No full DT geometry / no material interaction sim. from GEANT / no E field homogeneity / …

Pros and cons:

- Fast prototyping and full control over the simulation
- Not an official simulation, some effect poorly/not simulated
Performance: Cosmic Muons

Trigger performances compared to the global muon track:

- Global tracks are reconstructed out of all hits from the 2 external miniDTs
- Hits positioned using an external estimate of t_0 provided by two scintillator palettes
- Local track found using only hits from the miniDT where the trigger is running

![Graph 1](image1.png)

- Mean: $\mu = -0.50 \text{ ns}$
- Standard deviation: $\sigma = 3.87 \text{ ns}$

![Graph 2](image2.png)

- Global reco: $\sigma = 15.56 \text{ mrad}$
- Local reco: $\sigma = 6.43 \text{ mrad}$
Conclusions and Remarks

A NN-based local trigger demonstrator has been implemented and tested:

- **NNs used to remove combinatorial** before the application of analytical approaches
- **NNs can be retrained** to cope with different conditions
 - Can be easily replace without rewriting firmware
 - Increase flexibility of the method
 - Different models for different conditions/geometry
- **Small area occupied on the board and contained latency**
 - Optimal resource can be achieved with a “tree”-structure

Multiple improvements are possible:

- **Model performance depends on the quality of the simulation**
 - Retrain models on a more realistic simulation
Backup slides
Performance: Event Display