

The LHCb Upstream Tracker data flow architecture

Carlos Abellan on behalf of the LHCb UT collaboration

Waterloo, 26th May 2021

• The UT detector: small intro

Hardware description: why is it like that

 Data flow architecture: discussion of the data formats and implementations

Conclusions

Universität The UT detector

C. Abellan (UT Collaboration) - The LHCb Upstream Tracker data flow architecture

Universität The UT detector

Silicon Sensors

Sensor	Туре	Pitch	Length	Strips	# sensors
А	p-in-n	187.5 µm	99.5 mm	512	888
В	n-in-p	93.5 µm	99.5 mm	1024	48
С	n-in-p	93.5 µm	50 mm	1024	16
D	n-in-p	93.5 µm	50 mm	1024	16

- D type sensors: •
 - · Circular cut-out to maximize acceptance next to beam pipe
- A type sensors:
 - 187.5um pitch
 - Built-in pitch adapters • (190um to 80um)
- Top-side biasing via wire bonds rather than conductive glue to backplane

$\underset{\textbf{Z\"{i}} \textbf{u} \textbf{i} \textbf{c} \textbf{h}^{\text{u} \text{i} \text{t} \text{h}}}{\text{Universit}} \text{ The SALT ASIC }$

SALT128 ASIC prototype done and tested

- The sensor is wire bonded to the ASIC
- The ASIC does most of the work: analog processing, digitization, zero suppression, MCM suppression, serialization, ...
- Data (Channel-Value pairs)leaves the system in digital form, elink packets.

• The PEPI area contains backplanes and data concentrator boards (DCBs)

Universität Hardware description

• DCBs provide upstream and downstream data and control links

• Communication with surface is mainly optical, using PCIe40 boards (TELL40 and SOL40)

- Restrictions and irregularities:
 - Material budget: minimal marterial in acceptance are
 - Minimal traces
 - Different occupancy depending on position

- Restrictions and irregularities:
 - Material budget: minimal metal in acceptance are
 - Minimal traces
 - Different occupancy depending on position

- Restrictions and irregularities:
 - Material budget: minimal metal in acceptance are
 - Minimal traces
 - Different occupancy depending on position

Data Flow Architecture

Description of the different data formats

• ASICs send data in a common format:

Normal Pack	et: 4 bits		6	bits 12	bits 12	bits		
i tormar i acis	BXID	* 0	n	<i>Hits</i> H	it 0 Hi	t 1		Hit <i>nHits</i> -1
7	bits		5	bits				
channe	el number	chann	el va	lue after	DSP			
	He	eader (1	.2-bit)				
Packet name	BXID	Parity	[·] Flag	g Length	Data		(Comment
	4 bits	1 bit	1 bit	6 bit	$n \cdot 12$ bits	s		
Idle	0000	1	1	'b11_0000		1	io enou	ıgh data
BxVeto	bxid_cnt[3:0]	*	1	'b01_0001		1	3 xVeto	in TFCcmd
HeaderOnly	bxid_cnt[3:0]	*	1	'b01_0010		1	Header(Only in TFCcmd
BusyEvent	bxid_cnt[3:0]	/ *	1	'b01_0011		1	nHits>	63
BufferFull	bxid_cnt/3:0	*	1	'b01_0100		1	io spac	e in memory
BufferFullN	bxid_cnt/3:0	/ *	1	'b01_0101		1	io spac	e in memory
NZS	bxid_cnt/3:0	/ *	1	'b00_0110	Values	I	NZS in	TFCcmd
Normal	bxid_cnt[3:0]	*	0	nHits	Hits	1	Normal	event
Sync	bxid_cnt[11:	0]			sync_patte	ern S	Synch i	n TFCcmd

• Description of the different data formats

- A mix of practical reasons lead the UT to use several GBT data formats
- The GBT frame is 112b wide, the UT format, being 24b, 32b or 40b, leaves some unused space.
- Some flex cables are using 40 bit configurations to transmit 24b or 32b, cost reasons

		8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b
	Byte number	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ype	4 ASIC x 3 elink			24	4 bi	ts	24	4 bi	ts	24	4 bi	ts	24	1 bi	ts
me T	2 ASIC x 3 elink			24	4 bi	ts			24	4 bi	ts				
- Frai	2 ASIC x 4 elink				32	bits	5			32	bits	5			
GBT	2 ASIC x 5 elink				4() bi	ts			4() bi	ts			

This arrangement is done between the flex cables and PEPI backplanes.
Depending on the region the UT uses one format or another.

• Description of the different data formats

- A common output data format
- Desirable features:
 - Easy to implement in an FPGA
 - Low resources
 - Easy / fast to decode in a CPU/GPU
 - Aligned to 8b
 - Multithread friendly
 - Fit in the available PCIe bandwidth
 - Cover all corner cases gracefully
 - What if one ASIC stops working?
 - What if one ASIC goes to error?
 - What if one ASIC misbehaves?
 - Try NOT to lose too much data (i.e. 1 ASIC failing shouldn't interfere with the information of the other 47!)

A common output data format

Normal Packet:4 bits6 bits12 bits12 bitsBXID*0nHitsHit 0Hit 1...Hit nHits-1Hit:7 bits5 bitschannel numberchannel value after DSP

- Aligning data to 8b:
 - ASIC data is 7b+5b=12b, we add 4b padding?
 - We could find a use for those 4b...
 - Add ASIC_ID and we have a strip ID valid within a sensor

- Introduce the concept of *lanes*
- Oversimplifying the problem:
 - Each half TELL40 has 6 input fibres
 - With up to 4 ASICs each => 24 inputs total ASICs
 - Simplest case 3 elinks => 24b => 2x12b word => 2x16b after align
 - Total of 2 words x 24 ASICs = 48 words of 16b
 - Each half TELL40 has a 256b wide PCIe interface
 - 256b/16b = 16 words of 16b each interface
 - We would have to map 48 positions to 16 possible destinations each
 - Combinatorics is very large, hard to do, might require pipelining or complicated structures.

Introduce the concept of *lanes* •

16b

- A common output data format
- Introduce the concept of *lanes*.
- What if we simplify the combinatorics?
 - 1 fibre can only go to a small portion of the PCIe frame

- Introduce the concept of *lanes*
- Lanes greatly reduce combinatorics:

Example of a normal event

																			1												
		Eve	ent Hea	ders & F	lags				LAN	NE 5			LAN	NE 4			LA	NE 3			LAN	VE 2			LAN	NE 1			LAN	VE 0	
	16b 16b 1						6b	1	3b	1	6b	16	6b	1	6b	1	6b	1	6b	10	6b	16	3b	16	6b	16	6b	16	bb	16	ŝb
8b	8b 8b 8b 8b 8b 8b 8b					8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	
	Event 0 Header							Н	it1	H	lit0			H	lit0	H	Hit1	H	lit0	Н	lit1	Н	it0	Н	it1	Н	it0	Hi	t1	H	it0
																		H	lit2	Н	lit3	Н	it2			Н	it2				
																						Н	it4								
																								-							

- Conceptually it makes sense too:
 - In most of the cases 1 lane = 4 ASICs = 1 sensor
 - Strip ID is within a sensor
 - Not all cases, in some cases 1 lane = ½ or ¼ of a sensor

- Introduce the concept of *lanes*
- Lanes greatly reduce combinatorics:

Example of a normal event

																			1												
		Eve	ent Hea	ders & F	lags				LA	NE 5			LAI	NE 4			LA	NE 3			LAI	NE 2			LAN	NE 1			LA	NE 0	
	16b 16b 16b 1						6b	1	6b	1	6b	16	6b	1	6b	1	6b	1	6b	1	6b	10	6b	10	6b	1	6b	1	6b	1	6b
85	9 8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b 8b 8b				8b	8b	8b	8b												
	Event 0 Header							H	lit1	H	lit0			H	Hit0	ŀ	Hit1	ł	Hit0	F	lit1	Н	litO	Н	lit1	H	litO	Н	lit1	Н	lit0
																		ł	Hit2	F	lit3	Н	lit2			H	lit2				
																						Н	lit4								

- It is multithread friendly:
 - 6 lanes allow for up to 6 threads, lane positions are fixed, so every thread knows where to go to look for its data without colliding with other threads
- What is that header?

Exar	nple	of a	norr	nal e	event																										
		Eve	nt Head	ders & F	lags				LAI	NE 5			LAI	NE 4			LAI	NE 3			LAN	IE 2			LAN	NE 1			LAN	1E 0	
16	16b 16b 16b 1								3b	1	6b	16	3b	1	6b	16	6b	1	6b	16	6b	16	6b	16	6b	16	6b	16	6b	1	6b
8b	8b 8b 8b 8b 8b 8b				8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b		
Event 0 Header						Н	it1	Н	litO			F	litO	Н	lit1	H	litO	Н	it1	Н	litO	Н	it1	Н	it0	Н	t1	Н	lit0		
																		H	lit2	н	it3	н	lit2			Н	it2				
																						Н	lit4								
	1 1 1																														

- Corner cases:
 - ASICs flag uncommon states by a special header, when 1 or more flags are present we add the FLAGs HEADER, that is nothing else but all headers from all ASICs.

Exan	Imple of an event with an irregularity in at least one ASIC Statiscitally improbable, expected < 1% of the times																														
		Eve	nt Head	ers & F	lags				LAN	NE 5			LAN	IE 4			LAN	VE 3			LAN	IE 2			LAN	NE 1			LAN	IE 0	
16	b	10	6b	10	6b	1	6b	10	6b	10	6b	16	6b	16	6b	16	6b	10	6b	16	6b	1	6b	16	6b	1	6b	10	6b	10	6b
8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b 8b 8b 8b 8b		8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b	8b		
			Event 0	Header	r			Hi	it1	Hi	it0			Hi	t0	Hi	t1	H	it0	Hi	t1	н	it0	Hi	it1	н	it0	Hi	t1	H	it0
																		H	it2	Hi	t3	н	it2			н	it2				
			FLAG H	IEADEF	२																	н	it4								

									Head	er (12 b	its)	Data	
								BXIC	Parity	Flag	Length	Data	Comment
Flag Header Form	at: only present if	one or more ASIC	s have special cas	ses to report, FTYF	² E not normal, wh	en present all char	nnels report	4-bit	1-bit	1-bit	6-bit	12n-bit	
				41-				0000	1 _b		11 0000 _b		Idle packet (append if no enough data)
			0.					01 0000 _b		CorruptedEvent			
01-	8b 8b 8b 8b 8b 8b 8b												BXVeto
80	80	80	80	80	80	de de	80			1	01 0010 _b	NOI	HeaderOnly
								based of	*	b	01 0011 _b	present	BusyEvent (nHits>63)
ASIC3 Lane 1 Head	ASIG2 Lane 1 Head	ASIC1 Lane 1 Head	ASICU Lane 1 Head	ASIC3 Lane 0 Head	ASIG2 Lane 0 Head	ASIC1 Lane 0 Head	ASICO Lane O Head	DXIC			01 0100 _b		BufferFull
											01 0101 _b		BufferFullNZS
	Lane 3 Hea	iders [32b]			Lane 2 He	aders [32b]					00 0110 _b	data	NZS packet, true length is fixed in firmware
										0 _b	nHits	data	Normal event (nHits≤63)
	Lane 5 Hea	iders (320)			Lane 4 He	aders [32b]			12	-bit bxid	Í	pattern	Synch packet, fill one whole frame

But isn't that terribly inefficient?!

- It trades efficiency for other benefits. It needs to fit in our ~90Gbps PCIe available bandwidth.
- We have done simulations using the most realistic MC data we have

- Simulating the busiest TELL40s we have computed worst cases for all configurations (3,4,5 elinks)
- Our simulations do not go above 56.15Gbps
- True it could be more efficient, but it is very convenient

Implementation

- FPGA implementation
 - LHCb provides a framework

- FPGA implementation
 - LHCb provides a framework: data is received in a bus of 24b, 32b or 40b depending on what flavour the fibre is receiving. Common development

- Conclusions
 - The UT data flow architecture is presented
 - All data formats are defined
 - Several cases because of occupancy and geometry
 - All cases are covered: Different occupancies, different number of links, all possible states of all ASICs, etc...
 - The output format is easy to decode in a CPU
 - Information loss due to errors is minimized
 - Our simulations show that we have a good headroom in terms of bandwidth
 - The architecture is designed to hide all complexity from the DAQ and present a uniform data format
 - The design is intended to minimize the impact of having multiple cases to cover
 - Implementation is undergoing

Universität Backup Slides

C. Abellan (UT Collaboration) – The LHCb Upstream Tracker data flow architecture

- Restrictions and irregularities:
 - Material budget: minimal metal in acceptance are
 - Minimal traces
 - Different occupancy depending on position

• ASICs send data in a common format. But depending on the number of elinks information is spread differently over the links:

_	12 b	it 1.	2 bit	12 b	it	12 bit	12 b	oit 1	2 bit	12 bi	t	12 bit	12 b	oit
Data packet stream		Sync		Head Onlı	er- J	Sy	Inc		Sy	Inc	j	BxVeto	BusyE	Even
	8 bit	8 bit	8 bit	8 bit	8 bit	8 bit	8 bit	8 bit	8 bit	8 bit	8 bii	t 8 bit		
with 3 e-links	0	1	2	0	1	2	0	1	2	0	1	2	0	
with 4 e-links	0	1	2	3	0	1	2	3	0	1	2	3	0	
with 5 e-links	0	1	2	3	4	0	1	2	3	4	0	1	2	

• Flex cables provide power to the chips and transmit signals to the readout electronics.

Universität The data flow

• The flexes are connected to pigtail cables that cross the detector box boundaries and connect to the readout electronics

• DCBs mainly host GBT chips and optical transceivers

C. Abellan (UT Collaboration) - The LHCb Upstream Tracker data flow architecture