INO's RPC-DAQ module: Performance review and upgrade plans

M. N. Saraf^{a,*}, E.Yuvaraj^{a,*}, V. M. Datar^a, G.Majumder^a, Pathaleswar^a, Pethuraj^{a,b}, B.Satyanarayana^a, R.R.Shinde^a, D.Sil^a, S.Thoithoi^a, S.S.Upadhya^a (for the INO collaboration)

^a Tata Institute of Fundamental Research, Mumbai - 400005, India.

^b Homi Bhabha National Institute, Mumbai - 400094, India.

Outline of the Talk

- INO ICAL Experiment
- Role of DAQ in ICAL
- The Overall DAQ Scheme
- Performance of the RPC-DAQ Module
- Upgrades Planned
- Summary

The INO ICAL Experiment

- ICAL is a magnetized Iron-Calorimeter which will be set up by the India based Neutrino Observatory (INO) collaboration to study neutrinos
- It will study atmospheric neutrinos to determine their mass hierarchy and other properties.
- It will use iron as its target mass and 28,800 glass Resistive Plate Chambers (RPCs) as the active detector element.

INO Site Location

TIPP 2021

Role of DAQ in ICAL

- Identify physics events in the detector by forming a trigger
- Track the muons formed from the neutrino interaction with Iron by storing the detector state during the events
- Find directionality of muons through tracking and timing
- Slow Control and Monitoring
 - Monitor RPC health
 - RPC noise rate --> Background rate in each RPC strip
 - RPC chamber Current
 - High Voltage
 - Low Voltage
 - Ambient parameters, temperature, pressure and RH
- Carry out Calibrations
 - Pulse Amplitudes, Directly or via Time Over Threshold Measurement (TOT)
 - TDC Offsets

Functions of the RPC-DAQ Module

- The RPC-DAQ module is required to collect following information from the incoming RPC pulses.
 - Asynchronous event data on each trigger:
 - Strip hit data: event pattern across the 128 strips.
 - Timing data: relative arrival times of pulses (belonging to the same event) with respect to each other
 - Time Over Threshold Measurement, derived from TDC data
 - Periodic data:
 - Strip rates: Noise rate observed for each strip.
 - Ambient parameters: Temperature, Pressure and relative Humidity.
 - RPC Chamber Current from the local HV DC-DC (RPC Health).
 - RPC High Voltage, from the local HV DC-DC.
- Generate Trigger Primitives (1/2/3/4 Fold) for final trigger formation

7

RPC-DAQ in the **RPC** Tray

The RPC-DAQ in the RPC Tray

Design Considerations/Constraints

- Data rates, though very low for underground, but quite high for the surface detector
- Physical dimensions: In order to minimize the dead space, extremely small space has been allotted to the RPC-DAQ module
- Service life of the electronics is expected to be 15 years,
- Requirement of remote firmware upgradability

The RPCDAQ Board

Mini-ICAL at Madurai

- 10 layers of RPCs interleaved in 11 layers of magnetized Iron
- Total 20 RPCs installed
- Complete set of ICAL electronics installed and commissioned

RPC-DAQ Performance at mini-ICAL

- RPCDAQs are working in the mini-ICAL since 2018
- Lot of data has been collected and analyzed
- Throughput 8.5 kHz trigger rate

Performance: Bent Tracks with Magnet ON

Performance: Position & Time resolution

Performance: RPC Strip Multiplicity & Occupancy

RPC Strip Multiplicity

RPC Strip Occupancy

Performance: Efficiency (inefficiency plot)

Performance: Timing Spectrum

(a) Time Spectrum (X-plane)

(b) Time Spectrum (Y-plane)

Upgrades

Upgrades Planned

- External Fail Safe Bias Resistor network for LVDS inputs
- Connectors with Ejector latch/Strain Relief
- Migration to an integrated, digital ambient sensor BME280
- Migrate from HPTDC to INO TDC, developed at IIT Madras, Chennai India

2.5V

Change in the Time to Digital Converter

- The first version of DAQ used the HPTDC developed at CERN
- INO Collaboration has now indigenously developed a TDC chip at the IIT Madras.
- This will be incorporated in the next upgrade
 - 17 channels, 1 Trigger
 - Leading edge timestamp
 - Resolution: 125 ps
 - Dynamic Range: 65.5 µs

(a) TDC4 top-level layout

Poster <u>363</u> By Yuvaraj: Performance and Integration results of a high resolution Time to Digital Converter designed for INO ICAL Experiment

Old vs New

Summary

- The RPC-DAQ module has been successfully built and commissioned in the mini-ICAL
- Lot of data has been collected and insight gained
- Good performance of the DAQ has been recorded
- Some problems required module upgradation since firmware changes could not mitigate those
- We are already in the final stages of upgrades implementation.

THANK YOU FOR YOUR ATTENTION

On behalf of INO Electronics Team Visit us at <u>www.ino.tifr.res.in</u>

Global Services Connector Change with ejector/latches

- Global signals like Trigger and Global Clock arrive on cable with miniature connector.
- Use of strain relief and ejector latches is very important for fixing and removing cables
- Hence this change

Upgradation of Temperature, Pressure and Humidity (TPH) Sensor

- Migration to newer, integrated digital TPH sensor.
- BME280 Digital Humidity, Pressure and temperature Sensor
- Single component TPH, no external devices/ADC, micro miniature size

Event Acquisition Timing with hw write to wiz fifo

- One Data write from TDC to HW FIFO time = 100ns (approx.)
- One Data write from HW FIFO to WIZ FIFO = 100ns
- Total Event Collection Time (600 Bytes) = 30us (approx.)
- Total WIZ_FIFO write time (600 Bytes) = 35us
- EVENT push time from WiZ_FIFO to Network (600 Bytes) = 60us
- (This may increase if network is not free)
- $HW_FIFO = 16kB$
- $WIZ_FIFO = 105kB$
- Event Size FIFO= 2kB
- Total Dead time = $125 \mu s$
- Previous Dead time is with sw write to wiznet fifo: 281µs

Random	Event Triggers			Random	
Triggers	Sent	600 bytes		Data size (80-600 Bytes)	
Mean Freq	(millions)	Events Loss		Events Loss	
(kHz)		Boyd	(%)	Rcvd	(%)
		nevu	(70)		(,,,,
5	3	2999957	0.0014	2999933	0.0022
•					
	2	2998638	0.15		
8	3				
		2000856	0.001		
9	3	2999856	0.001		
10.1	3	2657432	11.5	2999595	0.013
Periodic	Event Triggers			Random Data size	
Triggers	Sent	600 bytes per event		(80-600 Bytes)	
Frequency	(millions)	Events	Loss	Events	Loss
(kHz)		Events		Rcvd	(%)
		KCVO	(%)		
-	2	2999990	0.00033	2999009	0.0033
8	5				
		2008631	0.0456	2000083	0 00056
8.5	3	2330031	0.0450	2333303	0.00050
		2005725		2000072	0 00000
9	3	2805/25	6.4	2999972	0.00093
TIPP 2021	3 Mand	a 2552219 R	14.9	2998859	0.0380

Results

Event Data Processing Scheme Test with Measurement of event loss percentage at various rates(with Fixed & variable Event size (HW EVENT COLLECTION) (HW WIZNET ACCESS)

The Trigger System for mini-ICAL

Parameter	ICAL	e-ICAL	m-ICAL
No. of modules	3	1	1
Module dimensions	16m × 16m × 14.5m	8m × 8m x 2m	4m × 4m x 1m
Detector dimensions	49m × 16m × 14.5m	8m × 8m x 2m	4m × 4m x 1m
No. of layers	150	20	10
Iron plate thickness	56 mm	56 mm	56 mm
Gap for RPC trays	40 mm	40 mm	45 mm
Magnetic field	1.3 Tesla	1.3Tesla	1.3Tesla
RPC dimensions	1,950mm × 1,910mm ×	1,950mm × 1,910mm ×	1,950mm × 1,910mm ×
	24mm	24mm	24mm
Readout strip pitch	30mm	30mm	30mm
No. of RPCs/Road/Layer	8	4	2
No. of Roads/Layer/Module	8	4	1
No. of RPC units/Layer	192	16	2
No. of RPC units	28,800 (107,266 m2)	320 (1,192 m2)	20 (74.5 m2)
No. of readout strips	36,86,400	40,960	2,560