

Design of a Robust Fiber Optic Communications System for Future Giga-scale Neutrino Detectors

Rob Halliday

Tyce DeYoung, Chris Ng, Brian Ferguson, Darren Grant, Dean Shooltz

IceCube South Pole Neutrino Observatory

- Uses >5k 10" PMTs frozen into the Antarctic Glacier
- Detects muons and neutrinos from ~4Gev to ~10PeV
- Signals are digitized in the optical modules and sent to surface

arXiv:1612.05093

IceCube Science

1 PeV Cascade from HESE

- HESE discovery of astrophysical neutrino flux (arXiv:2011.03545)
- High Precision oscillations measurement (arXiv:1707.07081)
- TXS0506+056 Blazar correlation – first neutrino source (<u>arXiv:1807.08816</u>)

Future Detectors

- IceCube-Gen2 will expand detection volume to 8km³ for high energy astrophysics
- IceCube Upgrade infill for science at lower energies + testbed for Gen2 devices + ice calibration

Future Detectors

mDOM

D-Egg

- IceCube-Gen2 will expand detection volume to 8km³ for high energy astrophysics
- IceCube Upgrade infill for science at lower energies + testbed for Gen2 devices + ice calibration

Requirements: Comms and Timing in IC and IC-Gen2

IceCube: Communications over long run copper

- Custom ASK Signaling protocol
 @ 0.72 Mbits/s per pair
 bandwidth capacity
- Reciprocal timing translation
 @1.6ns time resolution
- Stringent cross-talk requirements drive design

Gen2:

- New multi-PMT sensors means
 1.5Mbits/s per pair capacity
- Timing will also need to be O(~1ns)

Reciprocal Active Pulsing Calibration (RAPCAL) for timing

Recorded RAPCAL Pulse

IceCube JINST paper: arXiv:1612.05093

Lessons from AMANDA

- Antarctic Muon And Neutrino
 Detector Array (AMANDA) is IceCube's most recent predecessor
- During 1999/2000 season, 6 strings of fiber optics were deployed
 - Loose tube fibers were deployed for signal collection from PMTs (undigitized)
- Of the 5 strings with "standard" fiber feed throughs (penetrators), 94.6% survived freeze-in.

Lessons from AMANDA

- Antarctic Muon And Neutrino
 Detector Array (AMANDA) is IceCube's most recent predecessor
- During 1999/2000 season, 6 strings of fiber optics were deployed
 - Loose tube fibers were deployed for signal collection from PMTs (undigitized)
- Of the 5 strings with "standard" fiber feed throughs (penetrators), 94.6% survived freeze-in.

Two takeaway requirements:

- We need to either use a more robust fiberpenetrator combo and/or,
- We need to be failure tolerant to >5.4%

Gen2 Fiber Option

- Hybrid main cable with fiber data path and copper power delivery
- Main cable feeds fiber data to Field Nodes
- Field Nodes distribute power and timing and communicate with DOMs over local copper
 - Redundant up and downgoing copper connections

Fundamental Building Blocks

- Hybrid Copper + Fiber Main Cable
- Field Node Computing Bundle w/ White Rabbit PTP Core (WR "brain")
- Breakout and penetrator combination that can
 - Withstand freeze-in pressures
 - Deliver White Rabbit data and timing signals (Copper/Hybrid Fiber, i.e. 1000Base-X/-BX)

Demonstrating the Building Blocks – the Fiber Test System

Prototype Field

- Deploying the Fiber Test
 System in the IceCube
 Upgrade
- 6 Prototype Field Nodes communicate via White Rabbit and with the surface via standard comms
- System connectorized drop in for standard IC-Upgrade breakout cable
 - 4 DOM equivalent

FTS Block Diagram

IceCube White Rabbit Node

- Targeting PicoZed SOM + daughter board for White Rabbit FPGA package
 - SOM design simplifies daughter board
 - Includes WR Clocking resources and SFPs
- Optimizing for low power consumption and high reliability
 - Using Glenair Ruggedized SFPs

PicoZed SOM

WR Daughter Board

The last requirement – Redundancy

The last requirement – Redundancy

Conclusions

- Future South Pole neutrino detectors, and other large scale neutrino/astrophysics detectors will need solid, high performance data and timing transfer – fiber presents a path to provide this
- We are working towards a prototype Fiber Test System to be deployed at the South Pole as part of the IceCube Upgrade
- This system tests the building blocks of the IceCube-Gen2 Fiber option
 - Armored Fibers
 - Cascading connections (enabling redundancy)
 - White Rabbit Timing and Data transfer

Backup - Alternate Design

Single Mode

Copper connections are in red Fiber elements are in blue Internal elements are green

Backup – Armored Fibers

Fiber Optic Cable

Features

- Hermetic Stainless Steel Tube
- High Strength Wire
- Jacket Options
- Gel Options
- Flexible
- Rugged

Armored Stainless Steel Tubes

Armored Stainless Steel Cables from AFL are based on our patented tube technology which provides for a hermetic seal. The armor wires provide improved crush and tensile performance while maintaining good flexibility. Armored Stainless Steel Tubes can be used in a variety of applications such as temperature sensing and surface cable.

Cable Components

Options and Specifications

FIBER COUNT	TUBE O.D. (mm)	FINAL O.D. (mm)	WEIGHT (kg/km)	BREAKING STRENGTH (kg)	BEND RADIUS (mm)
4	1.32	2.12	16	222	132
6	2.00	3.20	38	526	200
12	2.40	3.60	45	619	240

Based on 200 kpsi Gips wire, gel filled tube

Encapsulation Option

PARAMETER	VALUE	
Materials	Polypropylene, Nylon, PVDF, Hytrel™	
Diameter	To customer specifications	
Cable markings	To customer specifications	