Test beam performance of a digital pixel calorimeter

Hiroki Yokoyama
Nikhef/Utrecht University

TIPP 2021
26.05.2021
Digital Pixel Calorimeter

- current R&D performed in the context of the Bergen R&D collaboration
- proton CT scanner for particle therapy
 - sampling calorimeter with high-granularity Monolithic Active Pixel Sensors (MAPS)
 - Al absorber + MAPS
 - to determine proton range and stopping power

→ Similar detector principle usable in High-Energy Physics
Digital Pixel Calorimeter

- current R&D performed in the context of the Bergen R&D collaboration
- **proton CT scanner for particle therapy**
 - sampling calorimeter with high-granularity Monolithic Active Pixel Sensors (MAPS)
 - Al absorber + MAPS
 - to determine proton range and stopping power

→ Similar detector principle usable in High-Energy Physics

- **Digital Pixel Calorimeter for High-Energy Physics**
 - W absorber + MAPS
 - number of pixels above threshold in proportion to deposited energy
 - good position resolution
 - 3D shower shape measurement
Digital Pixel Calorimeter

- current R&D performed in the context of the Bergen R&D collaboration
- proton CT scanner for particle therapy
 - sampling calorimeter with high-granularity Monolithic Active Pixel Sensors (MAPS)
 - Al absorber + MAPS
 - to determine proton range and stopping power
- **FoCal-E** (electromagnetic)
 - Similar detector principle usable in High-Energy Physics

Digital Pixel Calorimeter for High-Energy Physics

- W absorber + MAPS
- number of pixels above threshold in proportion to deposited energy
- good position resolution
- 3D shower shape measurement

FoCal-E (Forward EM-Calorimeter) in ALICE

- hybrid of digital pixel layers and lower-granularity layers
- High-granularity layers (digital pixels)
 - for two-shower separation
- Low-granularity layers (analog readout pads)
 - for energy measurement
- discriminate π^0/γ at high energy
 - separate photon pairs with distance < 5 mm
 - small Molière radius and high-granularity
Digital Pixel Calorimeter

- current R&D performed in the context of the Bergen R&D collaboration
- proton CT scanner for particle therapy
 - sampling calorimeter with high-granularity Monolithic Active Pixel Sensors (MAPS)
 - Al absorber + MAPS
 - to determine proton range and stopping power

→ Similar detector principle usable in High-Energy Physics

Digital Pixel Calorimeter for High-Energy Physics
- W absorber + MAPS
- number of pixels above threshold in proportion to deposited energy
- good position resolution
- 3D shower shape measurement

FoCal-E (electromagnetic)
- High-granularity layers (digital pixels)
 - for two-shower separation
- Low-granularity layers (analog readout pads)
 - for energy measurement

- discriminate π⁰/γ at high energy
 - separate photon pairs with distance < 5 mm
 - small Molière radius and high-granularity

FoCal-E (Forward EM-Calorimeter) in ALICE
- hybrid of digital pixel layers and lower-granularity layers
 - good position resolution
 - 3D shower shape measurement

This Presentation
ALPIDE MAPS

- ALPIDE CMOS MAPS
 - Chip size: 30.00 mm x 15.00 mm
 - Pixel matrix: 1024 x 512 (~500k pixels / chip)
 - Active area: 29.94 mm x 13.76 mm
 - Pixel size: 29.24 μm x 26.88 μm
 - Hit-driven readout
 - Readout speed: 400 Mb/s - 1.2 Gb/s
 - Power consumption proportional to the occupancy

![block diagram of the ALIPIDE pixel](image)

![block diagram of the ALIPIDE](image)
EPICAL-2
(Electromagnetic Pixel CALorimeter prototype-2)

- New digital pixel calorimeter prototype
 - small digital calorimeter (3x3 cm2 cross section)
 - 24 layers with each
 - 2 ALPIDE CMOS MAPS
 - 3 mm W absorber

- Project goal:
 - prove that the ALPIDE is suitable for a calorimeter
 - demonstrate suitability of ALPIDE as solution for FoCal high-granularity layers
 - two-shower separation under high particle density environment

R&D for the ALICE-FoCal detector proposal
Current work performed in the context of the Bergen pCT collaboration
Data Taking Setup

Cosmic muons
- ~6 months in 2020 at Utrecht University
- non-showering, well-defined track
- uniform energy deposition over all layers
- total ~9000 events

→ alignment, calibration
Data Taking Setup

- **Cosmic muons**
 - ~6 months in 2020 at Utrecht University
 - non-showering, well-defined track
 - uniform energy deposition over all layers
 - total ~9000 events

 → alignment, calibration

- **Electron Test Beam**
 - February 2020 at DESY TB22
 - electron (positron) beam
 - beam energies: 1.0, 2.0, 3.0, 4.0, 5.0 and 5.8 GeV
 - detector temperatures: 20°C, 25°C and 30°C
 - total: ~44 million events

 → energy linearity, energy resolution, shower profiles
Analysis Setup

- **Pixel masking**
 - noisy and dead pixel removal
 - chip classification from serial testing
 - pedestal runs
 - beam runs

- **Clustering**
 - pixel hits → cluster
 - DBSCAN algorithm
 - cluster comprised of adjacent hit pixels (eight neighbors)

- **Event selection**
 - single particles
 - minimal lateral leakage
Chip Alignment

✔ longitudinal position fixed
✔ three parameters for lateral position
 ▶ parallel shift: Δx, Δy
 ▶ rotation around z-axis: Δθ
✔ 3D track fitting + χ² minimization approach

→ alignment precision better than 10 µm

residual = cluster position - track fit
Chip Alignment

- longitudinal position fixed
- three parameters for lateral position
 - parallel shift: $\Delta x, \Delta y$
 - rotation around z-axis: $\Delta \theta$
- 3D track fitting + χ^2 minimization approach

\rightarrow alignment precision better than 10 µm
Chip Alignment

- longitudinal position fixed
- three parameters for lateral position
 - parallel shift: \(\Delta x, \Delta y \)
 - rotation around z-axis: \(\Delta \theta \)
- 3D track fitting + \(\chi^2 \) minimization approach

\(\rightarrow \) alignment precision better than 10 \(\mu \text{m} \)

residual = cluster position - track fit
Beam Inclination

- Beam direction is supposed to be parallel to the z-axis
- Correct tilt of the setup after cosmic alignment
 - Projecting hit positions in lateral plane
 - $(x^\text{hit} - x^\text{beam}) \text{ v.s. } (y^\text{hit} - y^\text{beam})$
- Deviation of Δx and Δy from 0 clearly indicates beam inclination

![Graph showing deviation of Δx and Δy from 0 for different beam energies/runs.](image)

![Diagram showing hit positions from injection point (5.8 GeV electron, layer 6).](image)

Fit function

$$f(x, y) = \frac{A}{r'} \cdot \exp\left(-\frac{r'}{B}\right)$$

$$r' = \sqrt{C + (x - x0)^2 + (y - y0)^2}$$

- 5 free parameters, A, B, C, x0 and y0
Energy Calibration

- assumption:
 - uniform energy deposition over all layers
 - average number of hits per chip
 - calibration parameter of chip responses

![Graph showing number of hits in layer 6 and average number of hits for EPICAL-2 preliminary data.](image)
Event Display

one-electron event
5 GeV
raw data

color coding: layers

detailed evolution of shower
Energy Measurement

- Total number of hits (clusters) per event
 - Gaussian shape with small asymmetry
 - Smaller width for clusters
 - Residual pileup at higher energy side
 - Low-energy contamination of beam
- Current study uses numerical mean and standard deviation
Energy Linearity

- numerical mean (μ) from distributions of total number of hits (clusters)
 - clear energy dependence
 - similar performance between hits and clusters
 - small deviation from linearity, possibly caused by
 - cluster overlap
 - lower-energy contamination
 - energy leakage

Graph:

- **Top Graph:**
 - Distribution of total number of hits (clusters)
 - 6 energy levels: 1 GeV, 2 GeV, 3 GeV, 4 GeV, 5 GeV, 5.8 GeV
 - Vertical axis: N/N_0 (normalized counts)
 - Horizontal axis: pixel hits in event

- **Bottom Graph:**
 - Energy dependence of mean (μ)
 - Linear fit
 - Data points and fitted line
 - Energy range: 1 GeV to 6 GeV
Energy Resolution

- standard deviation (σ) / mean (μ)
 - better than EPICAL-1 (MIMOSA)
 JINST 13 (2018) P01014
 - close to analog SiW ECAL (CALICE)
 physics prototype
 NIM A608 (2009) 372

- better performance for clusters compared to hits
 - large cluster-size fluctuation
 - vertically directed tracks creating large cluster
 - calibration can be improved

→ energy resolution superior compared to previous prototype
Longitudinal Energy Profile

- reasonable description by gamma distribution
- peak position \(t_{\text{max}} \) proportional to \(\log(E) \)
 - \(t_{\text{max}}^{\text{Hit}} > t_{\text{max}}^{\text{Cluster}} \)?
 - more accurate calibration for the conclusion

\[\text{work in progress} \]

→ first step in detailed shower shape analyses
Summary

- **Successful test of full digital pixel calorimeter (EPICAL-2)**
 - test with cosmic muons and electron beam (1.0~5.8 GeV/c)
 - ALPIDE sensor (high granularity CMOS MAPS) suitable for calorimeter use

- **EPICAL-2 performance at DESY TB**
 - preliminary energy linearity check
 - energy resolution improved compared to EPICAL-1
 - reasonable longitudinal shower shape

- **Outlook**
 - detailed study of shower development
 - evaluation of two-shower separation capability
 - further studies of high-energy behaviour (simulation and SPS test beam)
Contributors

University of Bergen

University of Birmingham

CERN

Goethe University Frankfurt

University of Oslo

Research and Production Enterprise
LTU Kharkiv Ukraine

Utrecht University/Nikhef

Yonsei University